Answer on Question \#46072 - Math - Analytic Geometry

Question. Find the angle between the lines

$$
P: x=1, \quad z-y=0
$$

and

$$
Q: 2 x-y=-1, \quad z=1
$$

Solution. Let us find vectors p and q which are parallel to the lines P and Q.
By assumption the line p is the intersection of two planes $x=1$ and $z-y=0$ having the following normal vectors:

$$
a_{1}=(1,0,0), \quad a_{2}=(0,-1,1) .
$$

Hence p must be orthogonal to both a_{1} and a_{2}. Therefore we can take p to be the cross-product $a_{1} \times a_{2}$ of these vectors:

$$
\begin{aligned}
p & =a_{1} \times a_{2}=(1,0,0) \times(0,-1,1) \\
& =\left(\left|\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right|,\left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right|,\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|\right) \\
& =(0 \cdot 1-0 \cdot(-1), 0 \cdot 0-1 \cdot 1,1 \cdot(-1)-0 \cdot 0) \\
& =(0,-1-1) .
\end{aligned}
$$

Analogously, the line q is the intersection of two planes $2 x-y=-1$ and $z=1$ having normal vectors:

$$
b_{1}=(2,-1,0), \quad b_{2}=(0,0,1)
$$

and we can assume that

$$
\begin{aligned}
q & =b_{1} \times b_{2}=(2,-1,0) \times(0,0,1) \\
& =\left(\left|\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right|,\left|\begin{array}{cc}
0 & 2 \\
1 & 0
\end{array}\right|,\left|\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right|\right) \\
& =(-1 \cdot 1-0 \cdot 0,0 \cdot 0-1 \cdot 2,2 \cdot 0-0 \cdot(-1)) \\
& =(-1,-2,0) .
\end{aligned}
$$

To find the angle ϕ between the vectors p and q notice that the scalar product (p, q) of these vectors can be computed in two distinct ways. On the one hand, it is the sum of products of the corresponding coordinates:

$$
(p, q)=0 \cdot(-1)+(-1) \cdot(-2)+(-1) \cdot 0=2 .
$$

On the other hand,

$$
(p, q)=|p| \cdot|q| \cdot \cos \phi
$$

whence

$$
\cos \phi=\frac{(p, q)}{|p| \cdot|q|}
$$

The lengths of these vectors are

$$
|p|=\sqrt{0^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{2}, \quad|q|=\sqrt{(-1)^{2}+(-2)^{2}+0^{2}}=\sqrt{5}
$$

therefore

$$
\cos \phi=\frac{(p, q)}{|p| \cdot|q|}=\frac{2}{\sqrt{2} \cdot \sqrt{5}}=\frac{\sqrt{2}}{\sqrt{5}}=\sqrt{\frac{2}{5}}=\sqrt{0.4} \approx 0.6325 .
$$

Hence

$$
\phi=\arccos \sqrt{0.4} \approx \arccos (0.6325) \approx 50.77^{\circ}
$$

Answer. The angle between the lines is

$$
\arccos \sqrt{0.4} \approx 50.77^{\circ}
$$

