Answer on Question \#46052 - Math - Integral Calculus

Question.

Find the area of the region bounded by the graphs of \sqrt{x} and $y=-x-1$ between $x=1$ and $x=4$.

19/6
1/4
$14 \pi / 5 \quad 1 / 2$

Solution.

As we know, the area under the non-negative function is defined as integral of non-negative function. But in our case, we must calculate the sum of two integrals with two functions. Because the integral gives only the area between the curve and the x-axes.

Function \sqrt{x} is non-negative for $1 \leq x \leq 4$, function $(-x-1)$ is negative for $1 \leq x \leq 4$. To evaluate the area bounded by the graph of $y=-x-1$ and x-axis between $x=1$ and $x=4$, we take expression $(-x-1)$ with the opposite sign in the definite integral.

So, let calculate the area between the functions:

$$
\begin{aligned}
A=\int_{1}^{4} \sqrt{x} d x & -\int_{1}^{4}(-x-1) d x=\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{1} ^{4}+\int_{1}^{4}(x+1) d x=\frac{2}{3}(8-1)+\left.\left(\frac{x^{2}}{2}+x\right)\right|_{1} ^{4}= \\
& =\frac{14}{3}+\left(8+4-\frac{1}{2}-1\right)=\frac{14}{3}+\frac{21}{2}=\frac{28+63}{6}=\frac{91}{6}
\end{aligned}
$$

Answer.

$A=\frac{91}{6}$, correct answers were absent.

