Find the surface area of the band of the sphere generated by revolving the arc of the cicle
$x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2$
lying above the interval $[-a, a], a, r$
π
3π
4жаг
$2 \pi a r$

Solution.

In the case when $f(x)$ is positive and has a continuous derivative, the surface area of the surface generated by revolving the curve $y=f(x), a \leq x \leq b$ about the x - axis is:
$S=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
In our case: $y=\sqrt{r^{2}-x^{2}}, x_{1}=-a, x_{2}=a$, $\frac{d y}{d x}=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{x}{\sqrt{r^{2}-x^{2}}}$.

So, $S=2 \pi \int_{-a}^{a} \sqrt{r^{2}-x^{2}} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=2 \pi \int_{-a}^{a} \sqrt{r^{2}-x^{2}} \frac{r}{\sqrt{r^{2}-x^{2}}} d x=$
$=2 \pi r \int_{-a}^{a} d x=\left.2 \pi r x\right|_{x=-a} ^{x=a}=2 \pi a r+2 \pi a r=4 \pi a r$.

Right answer is \#3.

