Answer on Question \#46047 - Math - Integral Calculus

Determine $I=\int 2 e^{x} d x$, given that $I=50.2$, when $x=3$.
$e^{\wedge} 3+C$
$x+C$
$2 e^{\wedge} x+10$
3ex+C

Solution.

First of all we will find the indefinite integral:
$I=\int 2 e^{x} d x=2 \int e^{x} d x=2 e^{x}+C$.
We know, that $I=50.2$, when $x=3$. Hence, we can use this condition to calculate the constant C :
$50.2=2 e^{3}+C$,
$C=50.2-2 e^{3}$.
$e \approx 2.7183$, then $e^{3} \approx 20.1$. It we can find with help of calculator.
Now we can evaluate C :
$C=50.2-2 \cdot 20.1=50.2-40.2=10$.
Answer:
hence, our indefinite integral $I=2 e^{x}+50.2-2 e^{3}$ (approximately $\left.I=2 e^{x}+10\right)$, the third answer is correct

