Answer on Question \#45971- Math - Integral Calculus

Question:

Integrate the following expression with respect to x :

$$
\int x \cdot \cos a x^{2} \cdot d x
$$

Solution:

Let us change the variable of integration

$$
t=a x^{2}
$$

Then the differential $d x$ takes the form

$$
d x=d \sqrt{\frac{t}{a}}=\frac{d t}{2 \sqrt{t a}}
$$

Therefore

$$
\int x \cdot \cos a x^{2} \cdot d x=\int \sqrt{\frac{t}{a}} \cdot \cos t \cdot \frac{d t}{2 \sqrt{t a}}=\frac{1}{2 a} \int \cos t \cdot d t
$$

Consequently

$$
\frac{1}{2 a} \int \cos t \cdot d t=\frac{\sin t}{2 a}+\text { const }=\frac{\sin a x^{2}}{2 a}+\text { const }
$$

Thus the final answer is

$$
\int x \cdot \cos a x^{2} \cdot d x=\frac{\sin a x^{2}}{2 a}+\text { const } .
$$

Answer:

$$
\int x \cdot \cos a x^{2} \cdot d x=\frac{\sin a x^{2}}{2 a}+\text { const } .
$$

