Answer on Question \#45940 - Math - Statistics and Probability

A fair coin is tossed until for the first time the same result appears twice in succession (i.e until the TT or $H H)$. Describe the sample space and assign probabilities that reflects the fairness of the coin. Find the probabilities of the events
$A=$ "The coin is tossed at most five times", $B=$ "the total number of tossed is odd'", $C=A U B$ $D=A($ intersection $) B$.

Solution

Suppose that we obtain same results at k-th and $k+1$-th coin toss.
If we obtain TT, then at k - 1-th coin toss we had received H (as we obtain two same results for the first time), k - 2-th coin toss we had received T, $k-3$-th coin toss we had received $\mathrm{H}, k-2$-th coin toss we had received, etc. The probability of such event is $\left(\frac{1}{2}\right)^{k+1}$.

If we obtain HH , then at k - 1-th coin toss we had received T (as we obtain two same results for the first time), k - 2-th coin toss we had received $\mathrm{H}, k-3$-th coin toss we had received $\mathrm{T}, k-2$-th coin toss we had received, etc. The probability of such event is $\left(\frac{1}{2}\right)^{k+1}$.

The probability to obtain same results at k-th and $k+1$-th coin toss is

$$
\left(\frac{1}{2}\right)^{k+1}+\left(\frac{1}{2}\right)^{k+1}=\left(\frac{1}{2}\right)^{k}
$$

The probability to obtain two same results for less than five coin toss is

$$
\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}=0.9375
$$

as the sum of probabilities to obtain two same results for $2,3,4$ and 5 coin toss.

Hence $P(A)=0.9375$.

The probability to obtain two same results for odd number of coin toss is

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{6}+\cdots=\frac{\frac{1}{4}}{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{3} \approx 0.3333
$$

as the sum of probabilities to obtain two same results for $3,5,7,9, \ldots$ coin toss.
Hence $P(B)=\frac{1}{3} \approx 0.3333$.
The probability to obtain two same results for less than five coin toss or for odd number of coin toss is

$$
\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{6}+\cdots=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\frac{\frac{1}{4}}{1-\left(\frac{1}{2}\right)^{2}}=\frac{23}{24} \approx 0.9583
$$

as the sum of probabilities to obtain two same results for 2,4 and for $3,5,7,9, \ldots$ coin toss.

Hence $P(C)=\frac{23}{24} \approx 0.9583$.
The probability to obtain two same results for less than five coin toss and for odd number of coin toss is

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{4}=0.3125
$$

as the sum of probabilities to obtain two same results for 3,5 coin toss.
Hence $P(D)=0.3125$.
Answer: $P(A)=0.9375, P(B)=\frac{1}{3} \approx 0.3333, P(C)=\frac{23}{24} \approx 0.9583, P(D)=0.3125$.

