Answer on Question \#45890 - Math - Statistics and Probability

Question.

(a) The chances that an academician, a business man and a politician becoming Vice Chancellor of a university are $0.5,0.3$ and 0.2 respectively. The probability that research work will be promoted in the university by these 3 gentlemen are respectively are $0.8,0.6$ and 0.4 . It is found research work has been promoted by the university. What is the chance that an academician has become the VC?
(b) A can hit a target 3 times in 5 shots; B can hit 2 times in 5 shots; C can hit 3 times in 4 shots. They fire a volley. What is the probability that two shots hit?

Solution.

(a) Let event H_{1} - an academician became Vice Chancellor; H_{2} - a business man became Vice Chancellor; H_{3} - a politician became Vice Chancellor. Let event A - research work is promoted in the university. Then $P\left(H_{1}\right)=0.5, P\left(H_{2}\right)=0.3, P\left(H_{3}\right)=0.2, P\left(\frac{A}{H_{1}}\right)=0.8$,
$P\left(A / H_{2}\right)=0.6, P\left(A / H_{3}\right)=0.4$. To find the probability that an academician has become the VC we shall use the Bayes formula:
$P\left(H_{1} / A\right)=\frac{P\left(A / H_{1}\right) \cdot P\left(H_{1}\right)}{P\left(A / H_{1}\right) \cdot P\left(H_{1}\right)+P\left(A / H_{2}\right) \cdot P\left(H_{2}\right)+P\left(A / H_{3}\right) \cdot P\left(H_{3}\right)}=\frac{0.8 \cdot 0.5}{0.8 \cdot 0.5+0.6 \cdot 0.3+0.4 \cdot 0.2}=\frac{20}{33}$.
(b) Let event $A=" A$ hit a target", $B=" B$ hit a target", $C=" C$ hit a target".

Then $P(A)=\frac{3}{5}=0.6$,
$P(B)=\frac{2}{5}=0.4, P(C)=\frac{3}{4}=0.75$. Assume that events A, B, C are independent.
$P($ two shots hit $)=P(A \cap B \cap \bar{C})+P(A \cap \bar{B} \cap C)+P(\bar{A} \cap B \cap C)=$
$=P(A) \cdot P(B) \cdot P(\bar{C})+P(A) \cdot P(\bar{B}) \cdot P(C)+P(\bar{A}) \cdot P(B) \cdot P(C)=$
$=P(A) \cdot P(B) \cdot(1-P(C))+P(A) \cdot(1-P(B)) \cdot P(C)+(1-P(A)) \cdot P(B) \cdot P(C)=$
$=0.6 \cdot 0.4 \cdot 0.25+0.6 \cdot 0.6 \cdot 0.75+0.4 \cdot 0.4 \cdot 0.75=0.45$.

Answer.

(a) $\frac{20}{33}$
(b) 0.45

