Answer on Question #45870 - Math - Vector Calculus

Problem.

1.) For the scalar potential function $\phi = (x^2 + y^2 + z^2)^2$ and the velocity vector field $u = (y^2, z, x^2)$ calculate the following vector quantities:

a) ∇φ ; ∇· u

b) $(\nabla^2) \Phi = (\nabla \cdot \nabla) \Phi$; $(\nabla^2) u$

c) ∇ × u

where u is a vector, and the vector operator $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$

Solution.

By u_x , u_y , u_z we will denote coordinates of vector field u.

a) $\nabla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) = (4x(x^2 + y^2 + z^2), 4y(x^2 + y^2 + z^2), 4z(x^2 + y^2 + z^2))$ by definition of del operator (or nabla operator).

$$\nabla \cdot \vec{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = \frac{\partial}{\partial x} (y^2) + \frac{\partial}{\partial y} (z) + \frac{\partial}{\partial z} (x^2) = 0 + 0 + 0 = 0 \text{ by definition of } 0$$

inner product of del operator (or nabla operator) and vector field.

b) $(\nabla^2)\phi = \nabla(\nabla\phi) = \nabla\left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right) = \Delta \phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2} = (4(x^2 + y^2 + z^2) + 8x^2) + (4(x^2 + y^2 + z^2) + 8y^2) + (4(x^2 + y^2 + z^2) + 8z^2) = 20(x^2 + y^2 + z^2)$ by definition of scalar Laplacian.

 $(\nabla^2) \vec{u} \ = \left(\nabla^2 u_{\scriptscriptstyle \mathcal{X}}, \nabla^2 u_{\scriptscriptstyle \mathcal{Y}}, \nabla^2 u_{\scriptscriptstyle \mathcal{Z}} \right) = (2,0,2), \text{ by definition of vector Laplasian}.$

$$\mathbf{c)} \quad \nabla \times \vec{u} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_x & u_y & u_z \end{vmatrix} = \left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}, \frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x}, \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right) = \left(\frac{\partial}{\partial y} (x^2) - \frac{\partial}{\partial y} (x^2)$$

$$\frac{\partial}{\partial z}(z), \frac{\partial}{\partial z}(y^2) - \frac{\partial}{\partial x}(x^2), \frac{\partial}{\partial x}(z) - \frac{\partial}{\partial y}(y^2)$$
 = $(-1, -2x, -2y)$, by definition of vector

product of del operator (or nabla operator) and vector field.

Answer:

a)
$$\nabla \phi = (4x(x^2 + y^2 + z^2), 4y(x^2 + y^2 + z^2), 4z(x^2 + y^2 + z^2)), \nabla \cdot \vec{u} = 0;$$

b)
$$(\nabla^2)\phi = 20(x^2 + y^2 + z^2), (\nabla^2)\vec{u} = (2,0,2)$$

c)
$$\nabla \times \vec{u} = (-1, -2x, -2y).$$