A closed box whose length is twice width is to have a surface of 192 square units. find the dimensions of the box when the volume is maximum

Solution:

It's a closed box, so it has a top.
Let x be the width of the box. Then its length is $2 x$. And the top and the bottom of the box are each a rectangle with width x and length $2 x$, meaning the area is $2 x^{2}$. So the surface area of the four sides (left, right front, back) must be $192-4 x^{2}$. The distance around the outside (summed length of the four sides, which is the same as the perimeter as viewed from above, is

$$
2 x+x+2 x+x=6 x
$$

dividing surface area $192-4 x^{2}$ by the length round the outside, $6 x$, gives the height of the box.

This will be:

$$
\frac{192}{6 x}-\frac{4 x^{2}}{6 x}=\frac{32}{x}-\frac{2 x}{3}
$$

Now the volume of the box is width times length times height

$$
x(2 x)\left(\frac{32}{x}-\frac{2 x}{3}\right)=(2 x)\left(32-\frac{2 x^{2}}{3}\right)=64 x-\frac{4 x^{3}}{3}
$$

Now we need to maximise this quantity, so we must differentiate this (to get $64-4 x^{2}$. This must be set equal to zero, i.e $64-4 x^{2}=0$, so $4 x^{2}=64$, and dividing through by 4 results in

$$
x^{2}=16
$$

so $x=4$ or -4 .
But it's a width, so x cannot be negative and hence $x=4$.
So the width is x , which is 4 .
The length is $2 x=2 \cdot 4=8$.
The height is $\frac{32}{x}-\frac{2 x}{3}=\frac{32}{4}-2 \cdot \frac{4}{3}=8-\frac{8}{3}=5 \frac{1}{3}$.
All measurements are in inches, since that's the units we were using.
Answer: width $=4$; length $=8$; height $=5 \frac{1}{3}$

