

Answer on Question #45588 - Math – Calculus

What is the easiest asymptote to find (horizontal, vertical, oblique)?

Solution

1. Horizontal asymptote is nothing else but particular case of an oblique asymptote.

$y = ax + b$ – *oblique* asymptote;

$y = b$ (here $a = 0$) – *horizontal* asymptote, where a, b – finite constants.

The ways of determination for both types of the asymptotes mentioned above are similar.

For *oblique* asymptote: $\lim_{x \rightarrow -\infty} [g(x) - (ax + b)] = 0$, $\lim_{x \rightarrow \infty} [g(x) - (ax + b)] = 0$.

For *horizontal* asymptote: $\lim_{x \rightarrow -\infty} [g(x) - b] = 0$, $\lim_{x \rightarrow \infty} [g(x) - b] = 0$.

Note that the *horizontal* asymptote of the graph of the function $y = g(x)$ requires only straightforward calculation of the limit: $b = \lim_{x \rightarrow -\infty} g(x)$ or $b = \lim_{x \rightarrow \infty} g(x)$. The *oblique* asymptote of the graph of the function $y = g(x)$ requires additionally some transformations of the function $g(x)$ to define parameter a or calculations of the following limits

$$a = \lim_{x \rightarrow +\infty} \frac{g(x)}{x}, b = \lim_{x \rightarrow +\infty} (g(x) - ax) \text{ or } a = \lim_{x \rightarrow -\infty} \frac{g(x)}{x}, b = \lim_{x \rightarrow -\infty} (g(x) - ax).$$

Hence, the horizontal asymptote is easier to find than the oblique asymptote.

2. Let's compare the horizontal and vertical asymptotes.

$x = c$ – *vertical* asymptote, where c – finite constant.

Conditions of *vertical* asymptote: $\lim_{x \rightarrow c^-} g(x) = \pm\infty$ or $\lim_{x \rightarrow c^+} g(x) = \pm\infty$.

“To find *vertical* asymptote” means “to find such finite constant c , which satisfies at least one of the conditions above”. Instead of straightforward calculation of the limit, this task can be extremely hard or even impossible. For example: $g(x) = \frac{1}{x^5 + x^4 + x^3 + x^2 + x - 1}$, polynomial at denominator has at least one real solution c , which is at the same time the c for asymptote’s equation we looking for. But as soon as it is 5th-order polynomial, we unable to calculate c analytically (just approximately by numerical methods).

Thus, *horizontal* asymptote is the easiest asymptote to find.