

Answer on Question #45562 – Math - Abstract Algebra

Problem.

Let $D(\text{subscript12}) = \{x, y : x^2 = e ; y^6 = e ; xy = (y^{-1})x\}$

a) Which of the following subsets are subgroups of $D(\text{subscript12})$? Justify your answer.

i) $\{x, y, xy, y^2, y^3, e\}$ ii) $\{xy, xy^2, y^2, e\}$ iii) $\{x, y^3, xy^3, e\}$

b) Find the order of y^2 . Is the subgroup (y^2) normal? Justify your answer.

c) Let $D(\text{subscript2n}) = \{x, y : x^2 = e ; y^n = e ; xy = (y^{-1})x\}$

Prove the relation

$\{x^{i+j}y^{j+k}x^k y^l\}$ if k is even

$x^{i+j}y^{j+k}x^k y^l = \{$

$\{x^{i+k}y^{l-j}\}$ if k is odd

Further, find all the elements of order 2 in $D(\text{subscript12})$.

d) Find two different Sylow 2-subgroups of $D(\text{subscript12})$.

Solution.

a) G is subgroup of D_{12} if and only if it is closed under product and inverses.

i) Suppose $G_1 = \{x, y, xy, y^2, y^3, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^3 = y^5 \in G_1$. Hence y^5 should be equal to either x or y or xy or y^2 or y^3 .

If $x = y^5$, then $e = x^2 = y^{10} = y^4$ or $y^2 = e$, what is impossible (the order of y is 6).

If $y = y^5$, then $e = y^4$ or $y^2 = e$, what is impossible (the order of y is 6).

If $xy = y^5$, then $x = y^4$ or $e = x^2 = y^8 = y^3$, what is impossible (the order of y is 6).

If $y^2 = y^5$, then $e = y^3$, what is impossible (the order of y is 6).

If $y^3 = y^5$, then $e = y^2$, what is impossible (the order of y is 6).

Hence y^5 isn't equal to neither x nor y nor xy nor y^2 nor y^3 nor e . Therefore G_1 isn't a subgroup.

ii) Suppose $G_2 = \{xy, xy^2, y^2, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^2 = y^4 \in G_2$. Hence y^4 should be equal to either xy or xy^2 or y^2 .

If $xy = y^4$, then $x = y^3$. Then $G_2 = \{y^4, y^5, y^2, e\}$, what is impossible (y^5 doesn't have inverse).

If $xy^2 = y^4$, then $x = y^2$, $e = x^2 = y^4$ or $y^2 = e$, what is impossible (the order of y is 6).

If $y^2 = y^4$, then $e = y^3$, what is impossible (the order of y is 6).

Hence y^4 isn't equal to neither xy nor xy^2 nor y^2 . Therefore G_2 isn't a subgroup.

iii) $G_3 = \{x, y^3, xy^3, e\}$.

$x^{-1} = x$, as $x^2 = e$;

$(y^3)^{-1} = y^3$, as $y^6 = e$;

$(xy^3)^{-1} = xy^3$, as $(xy^3)^2 = xy^3 \cdot y^3x = xy^6x = x^2 = e$ ($xy^3 = (y^3)^{-1}$ $x = y^3x$);

$e^{-1} = e$;

Hence G_3 is closed under inverses.

$y^3 \cdot x = x \cdot y^3 \in G_3$;

$x \cdot xy^3 = x^2y^3 = y^3 \in G_3$;

$xy^3 \cdot x = y^3x \cdot x = y^3 \in G_3$ ($xy^3 = (y^3)^{-1}$ $x = y^3x$);

$y^3 \cdot xy^3 = y^3 \cdot y^3x = y^6x = x \in G_3$;

$xy^3 \cdot y^3 = xy^6 = x \in G_3$;

Hence G_3 is closed under products.

Therefore G_3 is a subgroup.

Answer: iii).

b) $(y^2)^2 = y^4$ and $(y^2)^3 = e$, so the order of y^2 is 3. The subgroup (y^2) is cyclic, so it is normal (cyclic subgroup is abelian and abelian subgroup is normal).

c) If k is even, then $x^k = e$ and $x^i y^j x^k y^l = x^i y^j e y^l = x^i y^{j+l}$.

If k is odd, then $k - 1$ is even and $x^k = x^{k-1} \cdot x = x$.

$xy = (y^{-1})x$, so $yxy = x$ or $yx = x(y^{-1})$.

Hence $y^2x = y \cdot yx = y \cdot xy^{-1} = yx \cdot y^{-1} = xy^{-1} \cdot y^{-1} = xy^{-2}$;

$y^3x = y \cdot y^2x = y \cdot x(y^{-1})^2 = yx \cdot (y^{-1})^2 = x(y^{-1}) \cdot (y^{-1})^2 = xy^{-3}$;

...

$y^i x = y \cdot y^{i-1} x = y \cdot x(y^{-1})^{i-1} = yx \cdot (y^{-1})^{i-1} = x(y^{-1}) \cdot (y^{-1})^{i-1} = xy^{-i}$;

$x^i \cdot y^j \cdot x \cdot y^l = x^i \cdot y^j x \cdot y^l = x^i \cdot xy^{-i} \cdot y^l = x^i \cdot x^k \cdot y^{l-i} = x^{k+i} y^{l-i}$.

Then $x^i y^j x^k y^l = \begin{cases} x^i y^{j+l} & \text{if } k \text{ is even;} \\ x^{k+i} y^{l-i} & \text{if } k \text{ is odd.} \end{cases}$

There are twelve elements in $D_{12} = \{e, x, y, y^2, y^3, y^4, y^5, xy, xy^2, xy^3, xy^4, xy^5\}$.

The order of x is 2 and the order of y is 6.

y^2 has order 3, asy has order 6.

y^3 has order 2, asy has order 6.

y^4 has order 3, asy has order 6.

y^5 has order 6, asy has order 6.

$xy = y^{-1}x$, so $xy \cdot xy = xy \cdot y^{-1}x = xyy^{-1}x = x^2 = e$. Then xy has order 2.

$xy^2 = xy \cdot y = y^{-1}x \cdot y = y^{-1} \cdot xy = y^{-2}x$, so $xy^2 \cdot xy^2 = xy^2 \cdot y^{-2}x = xy^2 y^{-2}x = x^2 = e$.

Then xy^2 has order 2.

The similar steps can be made to prove that xy^3, xy^4, xy^5 has order 2.

Answer: The elements $x, y^3, xy, xy^2, xy^3, xy^4, xy^5$ has order 2.

d) From a) $G_3 = \{x, y^3, xy^3, e\}$ is Sylow 2-subgroup.

$G_4 = \{y^3, xy^2, xy^5, e\}$ is also Sylow 2-subgroup. We need as to show that G_4 is closed under products and inverses. The elements y^3, xy^2, xy^5 has order 2, so G_4 is closed under products.

$xy^2 \cdot y^3 = xy^5 \in G_4$;

$xy^5 \cdot y^3 = xy^8 = xy^2 \in G_4$;

$y^3 \cdot xy^2 = y^3 \cdot y^{-2}x = yx = xy^{-1} = xy^5 \in G_4$;

$y^3 \cdot xy^5 = y^3 \cdot y^{-5}x = y^{-2}x = xy^2 \in G_4$;

$xy^5 \cdot xy^2 = y^{-5}x \cdot xy^2 = y^{-5}x^2y^2 = y^{-3} = y^3 \in G_4$;

$xy^2 \cdot xy^5 = y^{-2}x \cdot xy^5 = y^{-2}x^2y^5 = y^3 \in G_4$;

Hence G_4 is closed under products.

Answer: $\{x, y^3, xy^3, e\}, \{y^3, xy^2, xy^5, e\}$ are Sylow 2-subgroups