Answer on Question \# 45525 - Math - Statistics and Probability

Three cooks, A, B and C bake a special kind of cake, and with respective probabilities $0.02,0.03$, and 0.05 it fails to rise. In the restaurant where they work, A bake 50 percent of these cakes, B 30 percent and C 20 percent. What proportion of failures is caused by A.

Solution:

We start to solve with definition of the probability events applying to our problem.
The probability of an event A occurring when it is known that some event A has occurred is called a conditional probability and is denoted by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$. The symbol $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is usually read the probability that A occurs given that B occurs or simply the probability of A given B.

The conditional probability of A , given B , denoted by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$, is defined the following formula.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})} \text { if } \mathrm{P}(\mathrm{~B})>0
$$

Note the given values accordingly to the condition of the task. The cook A bake a 50% of these cakes with probability $P(A)=0.5$, the cook B bake a 30% of cakes with probability $P(B)=0.3$ and the cook C bake a 20% of cakes with probability $P(C)=0.2$.

Let F be the event that the cake fails to rise. Then we can write the probability with takes into account this condition.

$$
\mathrm{P}(\mathrm{~F} \mid \mathrm{A})=0.02, \mathrm{P}(\mathrm{~F} \mid \mathrm{B})=0.03 \text { and } \mathrm{P}(\mathrm{~F} \mid \mathrm{C})=0.05
$$

To solve our problem we apply the Bayes' Theorem. Accordingly to the theorem it should be noted.

Let the events $A_{1}, A_{2}, \ldots, A_{k}$ forms a partition of the space S such that $P\left(A_{j}\right)>0$, for $j=$ $1, . ., k$, and let B be any event such that $P(B)>0$. Then, for $j=1, \ldots, k$,

$$
\mathrm{P}\left(\mathrm{~A}_{\mathrm{j}} \mid \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{\mathrm{j}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{j}}\right)}{\mathrm{P}(\mathrm{~B})}=\frac{\mathrm{P}\left(\mathrm{~A}_{\mathrm{j}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{j}}\right)}{\sum_{i=1}^{k} \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{i}}\right)}
$$

Apply the formula noted above to solve our problem.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~F})}{\mathrm{P}(\mathrm{~F})}
$$

Where $\mathrm{P}(\mathrm{F})$ is equal to the following formula.

$$
P(F)=P(A \cap F)+P(B \cap F)+P(C \cap F)=P(A) P(F \mid A)+P(B) P(F \mid B)+P(C) P(F \mid C)
$$

According to the condition of the task we have all data, so we can substitute into the formula noted above.

$$
P(F)=(0.5 \cdot 0.02)+(0.3 \cdot 0.03)+(0.2 \cdot 0.05)=0.01+0.009+0.01=0.029
$$

Now we can substitute the obtained value into the formula. We know that

$$
P(A \cap F)=P(A) P(F \mid A)=0.01
$$

So, we can find the value of $\mathrm{P}(\mathrm{A} \mid \mathrm{F})$.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~F})}{\mathrm{P}(\mathrm{~F})}=\frac{0.01}{0.029} \approx 0.344827
$$

Finally we can write that $\mathrm{P}(\mathrm{A} \mid \mathrm{F})=0.34482$
Answer: The proportion of failures is caused by A is equal to $P(A \mid F)=0.34482$ (approximately 34\%).

