Answer on Question \#45517 - Math - Statistics and Probability

Problem.

(a) A player tosses 3 fair coins. He wins Rs. 500 if 3 heads appear, Rs. 300 if 2 heads appear, Rs. 100 if 1 head occurs. On the other hand, he loses Rs. 1500 if 3 tails occur. Find the expected gain of the player and variance.
(b) The trouble shooting capability of an IC chip in a circuit is a random variable X whose distribution function is given by where x denote the number of years. Find the probability that the IC chip will work properly (i) less than 8 years (ii) beyond 8 years (iii) between 5 to 7 years

Solution.

(a) The probability that head appears equals $\frac{1}{2}=0.5$. The probability that tail appears equals $\frac{1}{2}=$ 0.5 .

The probability that 3 heads appear equals $0.5^{3}=0.125$ by Bernoulli trial.
The probability that 2 heads appear equals $\binom{3}{2} 0.5^{2} 0.5=0.375$ by Bernoulli trial.
The probability that 1 heads appear equals $\binom{3}{1} 0.5^{2} 0.5=0.375$ by Bernoulli trial.
The probability that 0 heads appear equals $\binom{3}{0} 0.5^{2} 0.5=0.125$ by Bernoulli trial.

Head occurs	3	2	1	0
Gain	500	300	100	-1500
Probability	0.125	0.375	0.375	0.125

Expected gain $E=0.125 \cdot 500+0.375 \cdot 300+0.375 \cdot 100+0.125 \cdot(-1500)=25=E$. Variance $=0.125 \cdot(500-E)^{2}+0.375 \cdot(300-E)^{2}+0.375 \cdot(100-E)^{2}+0.125 \cdot$ $(-1500-E)^{2}=346953.125$.
(b) The part of question is missed "whose distribution function is given by $f(x)=\ldots$, where x denote the number of years". Here $f(x)$ is the probability distribution function, $F(x)$ is the cumulative distribution function.
(i) The probability that that the IC chip will work properly less than 8 years is $F(8)$.
(ii) The probability that that the IC chip will work properly beyond 8 years is $1-F(8)$.
(iii) The probability that that the IC chip will work properly between 5 to 7 years 8 is $F(7)-F(5)$.

