Answer on Question \#45506 - Math - Analytic Geometry

Problem.

r a circle described on any focal chord of the parabola $y 2=4 a x$ as its diameter will touch which part of parabola?

Solution.

Suppose that the center of the circle is $O\left(x_{0}, y_{0}\right)$. Then $y_{0}=0$, as the parabola symmetric about the x-axis. The equation of the circle with center $O\left(x_{0}, 0\right)$ and radius r is $\left(x-x_{0}\right)^{2}+y^{2}=r^{2}$. The points of intersection of the circle $\left(x-x_{0}\right)^{2}+y^{2}=1$ and the parabola $y^{2}=4 a x$ are the solution of the equation $\left\{\begin{array}{l}\left(x-x_{0}\right)^{2}+y^{2}=r^{2} ; \\ y^{2}=4 a x,\end{array}\right.$ or $\left\{\begin{array}{l}\left(x-x_{0}\right)^{2}+4 a x=r^{2} ; \\ y^{2}=4 a x .\end{array}\right.$ The circle touches the parabola if and only if the equation $\left(x-x_{0}\right)^{2}+4 a x=r^{2}$ (i.e.
$\left.x^{2}-x\left(2 x_{0}-4 a\right)+x_{0}^{2}-r^{2}=0\right)$ has only one positive solution or when $(0,0)$ is the point of their intersection.
The equation $x^{2}-x\left(2 x_{0}-4 a\right)+x_{0}^{2}-r^{2}=0$ has one positive solution when
$D=\left(2 x_{0}-4 a\right)^{2}-4\left(x_{0}^{2}-r^{2}\right)=4 x_{0}^{2}-16 x_{0} a+16 a^{2}-4 x_{0}^{2}+4 r^{2}=0$ or $x_{0}=a+\frac{r^{2}}{4 a}$ and $x_{0}-2 a=\frac{r^{2}}{4 a}-a>0(r>2 a)$.
Therefore if $r>2 a$, then the equation of the circle with radius r that touches the parabola is $\left(x-a-\frac{r^{2}}{4 a}\right)^{2}+y^{2}=r^{2}$ and if $r \leq 2 a$, then the equation of circle with radius r that touches the parabola is $(x-r)^{2}+y^{2}=r^{2}$.
The focal chord is the chord of the circle if $r>2 a$ and $\frac{r^{2}}{4 a}-a=a$ (the solution of the equation $x^{2}-x\left(2 x_{0}-4 a\right)+x_{0}^{2}-r^{2}=0$ is equal to x-coordinate of focus). Hence $r=2 \sqrt{2} a$. This chord couldn't be diameter, as $x=a+\frac{r^{2}}{4 a}$ isn't focal chord.
Answer: The chord of the circle $(x-3 a)^{2}+y^{2}=8 a^{2}$ is the focal chord of the parabola $y^{2}=$ 4ax that touches this circle.
The picture when $a=1$.

There no circle such that the focal chord of the parabola $y^{2}=4 a x$ touches this circle and is the diameter of this circle.

