Problem.

Let D(subscript12) = $({x,y : x^2 = e ; y^6 = e ; xy = (y^{-1}) x})$ a) Which of the following subsets are subgroups of D(subscript12) ? Justify your answer. i) {x,y,xy,y^2,y^3,e} ii) {xy,xy^2,y^2,e} iii) {x,y^3,xy^3,e} **b)** Find the order of y². Is the subgroup (y²) normal ? Justify your answer. c) Let $D(subscript2n) = (\{x, y : x^2 = e ; y^n = e ; xy = (y^{-1}) x\})$ Prove the relation { x^i*y^(j+l) if k is even $X^{i*}y^{j*}x^{k*}y^{l} = {$ $\{x^{(i+k)}*y^{(l-j)}\}$ if k is odd Further, find all the elements of order 2 in D(subscript12). d) Find two different Sylow 2-subgroups of D(subscript12).

Solution.

a) G is supproup of D_{12} if and only if it is closed under product and inverses. i) Suppose $G_1 = \{x, y, xy, y^2, y^3, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^3 = y^5 \in G_1$. Hence y^5 should be equal to either x or y or xy or y^2 or y^3 . If $x = y^5$, then $e = x^2 = y^{10} = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $y = y^5$, then $e = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $xy = y^5$, then $x = y^4$ or $e = x^2 = y^8 = y^3$, what is impossible (the order of y is 6). If $y^2 = y^5$, then $e = y^3$, what is impossible (the order of y is 6). If $y^3 = y^5$, then $e = y^2$, what is impossible (the order of y is 6). Hence y^5 isn't equal to neither x nor y nor xy nor y^2 nor y^3 nor e. Therefore G_1 isn't a subgroup. ii) Suppose $G_2 = \{xy, xy^2, y^2, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^2 = y^4 \in G_2$. Hence y^4 should be equal to either xy or xy^2 or y^2 . If $xy = y^4$, then $x = y^3$. Then $G_2 = \{y^4, y^5, y^2, e\}$, what is impossible (y^5 doesn't have inverse). If $xy^2 = y^4$, then $x = y^2$, $e = x^2 = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $y^2 = y^5$, then $e = y^3$, what is impossible (the order of y is 6). Hence y^4 isn't equal to neither xy nor xy^2 nor y^2 . Therefore G_2 isn't a subgroup. iii) $G_3 = \{x, y^3, xy^3, e\}.$ $x^{-1} = x$, as $x^2 = e$; $(y^3)^{-1} = y^3$, as $y^6 = e$; $(xy^3)^{-1} = xy^3$, as $(xy^3)^2 = xy^3 \cdot y^3 x = xy^6 x = x^2 = e(xy^3 = (y^3)^{-1} x = y^3 x)$; $e^{-1} = e;$ Hence G_3 is closed under inverses. $y^3 \cdot x = x \cdot y^3 \in G_3;$ $x \cdot xy^3 = x^2y^3 = y^3 \in G_3;$ $xy^3 \cdot x = y^3x \cdot x = y^3 \in G_3 (xy^3 = (y^3)^{-1} x = y^3x);$ $y^3 \cdot xy^3 = y^3 \cdot y^3x = y^6x = x \in G_3;$ $xy^3 \cdot y^3 = xy^6 = x \in G_3;$ Hence G_3 is closed under products. Therefore G_3 is a subgroup. Answer: iii).

b) $(y^2)^2 = y^4$ and $(y^2)^3 = e$, so the order of y^2 is 3. The subgroup (y^2) is cyclic, so it is normal (cyclic subgroup is abelian and abelian subgroup is normal).

c) If k is even, then $x^k = e$ and $x^i v^j x^k v^l = x^i v^j e v^l = x^i v^{j+l}$.

If k is odd, then
$$k - 1$$
 is even and $x^k = x^{k-1} \cdot x = x$.
 $xy = (y^{-1})x$, so $yxy = x$ or $yx = x(y^{-1})$.
Hence $y^2x = y \cdot yx = y \cdot xy^{-1} = yx \cdot y^{-1} = xy^{-1} \cdot y^{-1} = xy^{-2}$;
 $y^3x = y \cdot y^2x = y \cdot x(y^{-1})^2 = yx \cdot (y^{-1})^2 = x(y^{-1}) \cdot (y^{-1})^2 = xy^{-3}$;
...
 $y^ix = y \cdot y^{i-1}x = y \cdot x(y^{-1})^{i-1} = yx \cdot (y^{-1})^{i-1} = x(y^{-1}) \cdot (y^{-1})^{i-1} = xy^{-i}$;
 $x^i \cdot y^j \cdot x \cdot y^l = x^i \cdot y^j x \cdot y^i = x^i \cdot xy^{-i} \cdot y^l = x^i \cdot x^k \cdot y^{l-i} = x^{k+i}y^{l-i}$.
Then $x^iy^jx^ky^l = \begin{cases} x^iy^{j+l} \text{ if } k \text{ is even}; \\ x^{k+i}y^{l-i} \text{ if } k \text{ is odd}. \end{cases}$
The order of x is 2 and the order of y is 6.
 y^2 has order 3, asy has order 6.
 y^3 has order 2, asy has order 6.
 y^4 has order 3, asy has order 6.
 y^5 has order 6, asy has order 6.
 $y^2 + xy \cdot y = y^{-1}x \cdot y = y^{-1}x + yy^{-1}x = xy^{-1}x = x^2 = e$. Then xy has order 2.
 $xy^2 = xy \cdot y = y^{-1}x \cdot y = y^{-1} \cdot xy = y^{-2}x$, so $xy^2 \cdot xy^2 = xy^2 \cdot y^{-2}x = xy^2 y^{-2}x = x^2 = e$.
Then xy^2 has order 2.
The similar steps can be made to prove that xy^3, xy^4, xy^5 has order 2.
Answer: The elements $x, y^3, xy, xy^2, xy^3, xy^4, xy^5$ has order 2.
d) From a) $G_3 = \{x, y^3, xy^3, e\}$ is Sylow 2-subgroup.
 $G_4 = \{y^3, xy^2, xy^5, e\}$ is also Sylow 2-subgroup. We need as to show that G_4 is closed under

products and inverses. The elements y^3 , xy^2 , xy^5 has order 2, so G_4 is closed under products. $xy^2 \cdot y^3 = xy^5 \in G_4$; $xy^5 \cdot y^3 = xy^8 = xy^2 \in G_4$; $y^3 \cdot xy^2 = y^3 \cdot y^{-2}x = yx = xy^{-1} = xy^5 \in G_4$; $y^3 \cdot xy^5 = y^3 \cdot y^{-5}x = y^{-2}x = xy^2 \in G_4$; $xy^5 \cdot xy^2 = y^{-5}x \cdot xy^2 = y^{-5}x^2y^2 = y^{-3} = y^3 \in G_4$; $xy^2 \cdot xy^5 = y^{-2}x \cdot xy^5 = y^{-2}x^2y^5 = y^3 \in G_4$; Hence G_4 is closed under products. **Answer:** { x, y^3, xy^3, e }, { y^3, xy^2, xy^5, e } are Sylow 2-subgroups