Answer on Question \#45406 - Math - Abstract Algebra

Problem.

Let D (subscript12) $=\left(\left\{x, y: x^{\wedge} 2=e ; y^{\wedge} 6=e ; x y=\left(y^{\wedge}-1\right) x\right\}\right)$
a) Which of the following subsets are subgroups of D (subscript12) ? Justify your answer.
i) $\left\{x, y, x y, y^{\wedge} 2, y^{\wedge} 3, e\right\}$ ii) $\left\{x y, x y^{\wedge} 2, y^{\wedge} 2, e\right\}$ iii) $\left\{x, y^{\wedge} 3, x y^{\wedge} 3, e\right\}$
b) Find the order of $y^{\wedge} 2$. Is the subgroup $\left(y^{\wedge} 2\right)$ normal ? Justify your answer.
c) Let $D($ subscript $2 n)=\left(\left\{x, y: x^{\wedge} 2=e ; y^{\wedge} n=e ; x y=\left(y^{\wedge}-1\right) x\right\}\right)$

Prove the relation
$\left\{x^{\wedge} i^{*} y^{\wedge}(j+1)\right.$ if k is even
$x^{\wedge} i^{*} y^{\wedge} j^{*} x^{\wedge} k^{*} y^{\wedge} l=\{$
$\left\{x^{\wedge}(i+k)^{*} y^{\wedge}(l-j)\right.$ if k is odd
Further, find all the elements of order 2 in $\mathrm{D}($ subscript12) .
d) Find two different Sylow 2-subgroups of D (subscript12) .

Solution.

a) G is supgroup of D_{12} if and only if it is closed under product and inverses.
i) Suppose $G_{1}=\left\{x, y, x y, y^{2}, y^{3}, e\right\}$ is a subgroup of D_{12}. Then $y^{2} \cdot y^{3}=y^{5} \in G_{1}$. Hence y^{5} should be equal to either x or y or $x y$ or y^{2} or y^{3}.
If $x=y^{5}$, then $e=x^{2}=y^{10}=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $y=y^{5}$, then $e=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $x y=y^{5}$, then $x=y^{4}$ or $e=x^{2}=y^{8}=y^{3}$, what is impossible (the order of y is 6).
If $y^{2}=y^{5}$, then $e=y^{3}$, what is impossible (the order of y is 6).
If $y^{3}=y^{5}$, then $e=y^{2}$, what is impossible (the order of y is 6).
Hence y^{5} isn't equal to neither x nor y nor $x y$ nor y^{2} nor y^{3} nor e. Therefore G_{1} isn't a subgroup.
ii) Suppose $G_{2}=\left\{x y, x y^{2}, y^{2}, e\right\}$ is a subgroup of D_{12}. Then $y^{2} \cdot y^{2}=y^{4} \in G_{2}$. Hence y^{4} should be equal to either $x y$ or $x y^{2}$ or y^{2}.
If $x y=y^{4}$, then $x=y^{3}$. Then $G_{2}=\left\{y^{4}, y^{5}, y^{2}, e\right\}$, what is impossible (y^{5} doesn't have inverse).
If $x y^{2}=y^{4}$, then $x=y^{2}, e=x^{2}=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $y^{2}=y^{5}$, then $e=y^{3}$, what is impossible (the order of y is 6).
Hence y^{4} isn't equal to neither $x y$ nor $x y^{2}$ nor y^{2}. Therefore G_{2} isn't a subgroup.
iii) $G_{3}=\left\{x, y^{3}, x y^{3}, e\right\}$.
$x^{-1}=x$, as $x^{2}=e$;
$\left(y^{3}\right)^{-1}=y^{3}$, as $y^{6}=e$;
$\left(x y^{3}\right)^{-1}=x y^{3}$, as $\left(x y^{3}\right)^{2}=x y^{3} \cdot y^{3} x=x y^{6} x=x^{2}=e\left(x y^{3}=\left(y^{3}\right)^{-1} x=y^{3} x\right)$;
$e^{-1}=e$;
Hence G_{3} is closed under inverses.
$y^{3} \cdot x=x \cdot y^{3} \in G_{3}$;
$x \cdot x y^{3}=x^{2} y^{3}=y^{3} \in G_{3}$;
$x y^{3} \cdot x=y^{3} x \cdot x=y^{3} \in G_{3}\left(x y^{3}=\left(y^{3}\right)^{-1} x=y^{3} x\right)$;
$y^{3} \cdot x y^{3}=y^{3} \cdot y^{3} x=y^{6} x=x \in G_{3}$;
$x y^{3} \cdot y^{3}=x y^{6}=x \in G_{3}$;
Hence G_{3} is closed under products.
Therefore G_{3} is a subgroup.
Answer: iii).
b) $\left(y^{2}\right)^{2}=y^{4}$ and $\left(y^{2}\right)^{3}=e$, so the order of y^{2} is 3 . The subgroup $\left(y^{2}\right)$ is cyclic, so it is normal (cyclic subgroup is abelian and abelian subgroup is normal).
c) If k is even, then $x^{k}=e$ and $x^{i} y^{j} x^{k} y^{l}=x^{i} y^{j} e y^{l}=x^{i} y^{j+l}$.

If k is odd, then $k-1$ is even and $x^{k}=x^{k-1} \cdot x=x$.
$x y=\left(y^{-1}\right) x$, so $y x y=x$ or $y x=x\left(y^{-1}\right)$.
Hence $y^{2} x=y \cdot y x=y \cdot x y^{-1}=y x \cdot y^{-1}=x y^{-1} \cdot y^{-1}=x y^{-2}$;
$y^{3} x=y \cdot y^{2} x=y \cdot x\left(y^{-1}\right)^{2}=y x \cdot\left(y^{-1}\right)^{2}=x\left(y^{-1}\right) \cdot\left(y^{-1}\right)^{2}=x y^{-3} ;$
$y^{i} x=y \cdot y^{i-1} x=y \cdot x\left(y^{-1}\right)^{i-1}=y x \cdot\left(y^{-1}\right)^{i-1}=x\left(y^{-1}\right) \cdot\left(y^{-1}\right)^{i-1}=x y^{-i}$;
$x^{i} \cdot y^{j} \cdot x \cdot y^{l}=x^{i} \cdot y^{j} x \cdot y^{l}=x^{i} \cdot x y^{-i} \cdot y^{l}=x^{i} \cdot x^{k} \cdot y^{l-i}=x^{k+i} y^{l-i}$.
Then $x^{i} y^{j} x^{k} y^{l}=\left\{\begin{array}{l}x^{i} y^{j+l} \text { if } k \text { is even; } \\ x^{k+i} y^{l-i} \text { if } k \text { is odd. }\end{array}\right.$
There are twelve elements in $D_{12}=\left\{e, x, y, y^{2}, y^{3}, y^{4}, y^{5}, x y, x y^{2}, x y^{3}, x y^{4}, x y^{5}\right\}$.
The order of x is 2 and the order of y is 6 .
y^{2} has order 3 , asy has order 6 .
y^{3} has order 2, asy has order 6 .
y^{4} has order 3 , asy has order 6.
y^{5} has order 6 , asy has order 6 .
$x y=y^{-1} x$, so $x y \cdot x y=x y \cdot y^{-1} x=x y y^{-1} x=x^{2}=e$. Then $x y$ has order 2.
$x y^{2}=x y \cdot y=y^{-1} x \cdot y=y^{-1} \cdot x y=y^{-2} x$, so $x y^{2} \cdot x y^{2}=x y^{2} \cdot y^{-2} x=x y^{2} y^{-2} x=x^{2}=e$.
Then $x y^{2}$ has order 2.
The similar steps can be made to prove that $x y^{3}, x y^{4}, x y^{5}$ has order 2.
Answer: The elements $x, y^{3}, x y, x y^{2}, x y^{3}, x y^{4}, x y^{5}$ has order 2.
d) From a) $G_{3}=\left\{x, y^{3}, x y^{3}, e\right\}$ is Sylow 2-subgroup.
$G_{4}=\left\{y^{3}, x y^{2}, x y^{5}, e\right\}$ is also Sylow 2-subgroup. We need as to show that G_{4} is closed under
products and inverses. The elements $y^{3}, x y^{2}, x y^{5}$ has order 2 , so G_{4} is closed under products.
$x y^{2} \cdot y^{3}=x y^{5} \in G_{4}$;
$x y^{5} \cdot y^{3}=x y^{8}=x y^{2} \in G_{4}$;
$y^{3} \cdot x y^{2}=y^{3} \cdot y^{-2} x=y x=x y^{-1}=x y^{5} \in G_{4} ;$
$y^{3} \cdot x y^{5}=y^{3} \cdot y^{-5} x=y^{-2} x=x y^{2} \in G_{4}$;
$x y^{5} \cdot x y^{2}=y^{-5} x \cdot x y^{2}=y^{-5} x^{2} y^{2}=y^{-3}=y^{3} \in G_{4}$;
$x y^{2} \cdot x y^{5}=y^{-2} x \cdot x y^{5}=y^{-2} x^{2} y^{5}=y^{3} \in G_{4}$;
Hence G_{4} is closed under products.
Answer: $\left\{x, y^{3}, x y^{3}, e\right\},\left\{y^{3}, x y^{2}, x y^{5}, e\right\}$ are Sylow 2-subgroups

