Problem.

Let D(subscript12) =($\{x, y : x^2 = e ; y^6 = e ; xy = (y^{-1}) x\}$) a) Which of the following subsets are subgroups of D(subscript12) ? Justify your answer. i) $\{x, y, xy, y^2, y^3, e\}$ ii) $\{xy, xy^2, y^2, e\}$ iii) $\{x, y^3, xy^3, e\}$

Solution.

G is supgroup of D_{12} if and only if it is closed under product and inverses. i) Suppose $G_1 = \{x, y, xy, y^2, y^3, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^3 = y^5 \in G_1$. Hence y^5 should be equal to either x or y or xy or y^2 or y^3 . If $x = y^5$, then $e = x^2 = y^{10} = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $y = y^5$, then $e = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $xy = y^5$, then $x = y^4$ or $e = x^2 = y^8 = y^3$, what is impossible (the order of y is 6). If $y^2 = y^5$, then $e = y^3$, what is impossible (the order of y is 6). If $y^3 = y^5$, then $e = y^2$, what is impossible (the order of y is 6). Hence y^5 isn't equal to neither x nor y nor xy nor y^2 nor y^3 nor e. Therefore G_1 isn't a subgroup.

ii) Suppose $G_2 = \{xy, xy^2, y^2, e\}$ is a subgroup of D_{12} . Then $y^2 \cdot y^2 = y^4 \in G_2$. Hence y^4 should be equal to either xy or xy^2 or y^2 .

If $xy = y^4$, then $x = y^3$. Then $G_2 = \{y^4, y^5, y^2, e\}$, what is impossible (y^5 doesn't have inverse). If $xy^2 = y^4$, then $x = y^2$, $e = x^2 = y^4$ or $y^2 = e$, what is impossible (the order of y is 6). If $y^2 = y^5$, then $e = y^3$, what is impossible (the order of y is 6). Hence y^4 isn't equal to neither xy nor xy^2 nor y^2 . Therefore G_2 isn't a subgroup.

iii)
$$G_3 = \{x, y^3, xy^3, e\}$$
.
 $x^{-1} = x$, as $x^2 = e$;
 $(y^3)^{-1} = y^3$, as $y^6 = e$;
 $(xy^3)^{-1} = xy^3$, as $(xy^3)^2 = xy^3 \cdot y^3x = xy^6x = x^2 = e (xy^3 = (y^3)^{-1} x = y^3x)$;
 $e^{-1} = e$;
Hence G_3 is closed under inverses.
 $y^3 \cdot x = x \cdot y^3 \in G_3$;
 $x \cdot xy^3 = x^2y^3 = y^3 \in G_3$;
 $xy^3 \cdot x = y^3x \cdot x = y^3 \in G_3 (xy^3 = (y^3)^{-1} x = y^3x)$;
 $y^3 \cdot xy^3 = y^3 \cdot y^3x = y^6x = x \in G_3$;
 $xy^3 \cdot y^3 = xy^6 = x \in G_3$;
Hence G_3 is closed under products.
Therefore G_3 is a subgroup.
Answer: iii).