Answer on Question \#45405 - Math - Abstract Algebra

Problem.

Let D (subscript12) $=\left(\left\{x, y: x^{\wedge} 2=e ; y^{\wedge} 6=e ; x y=\left(y^{\wedge}-1\right) x\right\}\right)$ a) Which of the following subsets are subgroups of D (subscript12) ? Justify your answer. i) $\left\{x, y, x y, y^{\wedge} 2, y^{\wedge} 3, e\right\}$ ii) $\left\{x y, x y^{\wedge} 2, y^{\wedge} 2, e\right\}$ iii) $\left\{x, y^{\wedge} 3, x y^{\wedge} 3, e\right\}$

Solution.

G is supgroup of D_{12} if and only if it is closed under product and inverses.
i) Suppose $G_{1}=\left\{x, y, x y, y^{2}, y^{3}, e\right\}$ is a subgroup of D_{12}. Then $y^{2} \cdot y^{3}=y^{5} \in G_{1}$. Hence y^{5} should be equal to either x or y or $x y$ or y^{2} or y^{3}.
If $x=y^{5}$, then $e=x^{2}=y^{10}=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $y=y^{5}$, then $e=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $x y=y^{5}$, then $x=y^{4}$ or $e=x^{2}=y^{8}=y^{3}$, what is impossible (the order of y is 6).
If $y^{2}=y^{5}$, then $e=y^{3}$, what is impossible (the order of y is 6).
If $y^{3}=y^{5}$, then $e=y^{2}$, what is impossible (the order of y is 6).
Hence y^{5} isn't equal to neither x nor y nor $x y$ nor y^{2} nor y^{3} nor e. Therefore G_{1} isn't a subgroup.
ii) Suppose $G_{2}=\left\{x y, x y^{2}, y^{2}, e\right\}$ is a subgroup of D_{12}. Then $y^{2} \cdot y^{2}=y^{4} \in G_{2}$. Hence y^{4} should be equal to either $x y$ or $x y^{2}$ or y^{2}.
If $x y=y^{4}$, then $x=y^{3}$. Then $G_{2}=\left\{y^{4}, y^{5}, y^{2}, e\right\}$, what is impossible (y^{5} doesn't have inverse).
If $x y^{2}=y^{4}$, then $x=y^{2}, e=x^{2}=y^{4}$ or $y^{2}=e$, what is impossible (the order of y is 6).
If $y^{2}=y^{5}$, then $e=y^{3}$, what is impossible (the order of y is 6).
Hence y^{4} isn't equal to neither $x y$ nor $x y^{2}$ nor y^{2}. Therefore G_{2} isn't a subgroup.
iii) $G_{3}=\left\{x, y^{3}, x y^{3}, e\right\}$.
$x^{-1}=x$, as $x^{2}=e$;
$\left(y^{3}\right)^{-1}=y^{3}$, as $y^{6}=e$;
$\left(x y^{3}\right)^{-1}=x y^{3}$, as $\left(x y^{3}\right)^{2}=x y^{3} \cdot y^{3} x=x y^{6} x=x^{2}=e\left(x y^{3}=\left(y^{3}\right)^{-1} x=y^{3} x\right)$;
$e^{-1}=e$;
Hence G_{3} is closed under inverses.
$y^{3} \cdot x=x \cdot y^{3} \in G_{3}$;
$x \cdot x y^{3}=x^{2} y^{3}=y^{3} \in G_{3}$;
$x y^{3} \cdot x=y^{3} x \cdot x=y^{3} \in G_{3}\left(x y^{3}=\left(y^{3}\right)^{-1} x=y^{3} x\right)$;
$y^{3} \cdot x y^{3}=y^{3} \cdot y^{3} x=y^{6} x=x \in G_{3}$;
$x y^{3} \cdot y^{3}=x y^{6}=x \in G_{3} ;$
Hence G_{3} is closed under products.
Therefore G_{3} is a subgroup.
Answer: iii).

