Answer on Question \#45379 - Math - Analytical Geometry

Find the center, vertices, and foci of the ellipse with equation $x 2 / 100+y 2 / 36=1$

Solution:

$$
\frac{x^{2}}{100}+\frac{y^{2}}{36}=1
$$

Since $x^{2}=(x-0)^{2}$ and $y^{2}=(y-0)^{2}$, the equation above is really:

$$
\frac{(x-0)^{2}}{100}+\frac{(y-0)^{2}}{36}=1
$$

Then the center is at $(\mathrm{h}, \mathrm{k})=(0,0)$. I know that the a^{2} is always the larger denominator (and b^{2} is the smaller denominator), and this larger denominator is under the variable that parallels the longer direction of the ellipse. Since 100 is larger than 36 , then $\mathrm{a}^{2}=100, \mathrm{a}= \pm \sqrt{100}= \pm 10$, and this ellipse is wider (paralleling the x-axis) than it is tall. The value of a also tells me that the vertices are 10 units to either side of the center, at $(-10,0)$ and $(10,0)$.
Let's find co-vertices of the ellipse:

$$
\begin{gathered}
b^{2}=36 \\
b= \pm \sqrt{3} 6= \pm 6
\end{gathered}
$$

Co-vertices: $(-6,0)$ and $(6,0)$.
To find the foci, we need to find the value of c. From the equation, I already have a^{2} and b^{2}, so:

$$
\begin{gathered}
a^{2}-c^{2}=b^{2} \\
100-c^{2}=36 \\
c^{2}=64 \\
c= \pm \sqrt{64}= \pm 8
\end{gathered}
$$

Then the value of c is 8 , and the foci are eight units to either side of the center, at $(-8,0)$ and $(8,0)$

Answer: center $(0,0)$,
vertices are $(-10,0)$ and $(10,0),(-6,0)$ and $(6,0)$.
foci are $(-8,0)$ and $(8,0)$.

