

Answer on Question #45216 – Math – Other

if x and b are complementary angles such that $\cos(x) = \frac{\sqrt{3}}{2}$. Find the value of $2 \sin b \sin x$

Solution

If $\cos(x) = \frac{\sqrt{3}}{2}$, then $x = 30^\circ$ or $\pi/6$.

Two angles are complementary when they add up to 90° , i.e. $x+b=90^\circ$.

Knowing that b and x are complementary, we can find that $b = 90^\circ - x = 90^\circ - 30^\circ = 60^\circ$ or $\pi/3$.

Recall $\sin b = \sin 60^\circ = \frac{\sqrt{3}}{2}$, $\sin x = \sin 30^\circ = \frac{1}{2}$.

Then $2 \sin b \sin x = 2 * \frac{\sqrt{3}}{2} * \frac{1}{2} = \frac{\sqrt{3}}{2}$.