Answer on Question #45115 – Math – Analytic Geometry

Question

Find an equation in standard form for the hyperbola with vertices at $(0; \pm 2)$ and foci at $(0; \pm 7)$.

Solution

Since the vertices and foci are located on the *y*-axis, the general equation of this hyperbola has the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$. Find a^2 and b^2 . Let x = 0, $y = \pm 2$. Then we have

 $-\frac{4}{b^2} = -1 \Leftrightarrow b^2 = 4$. By hypothesis, a half of focal length c is equal to 7, so we have $c^2 = a^2 + b^2 \Rightarrow 49 = a^2 + 4 \Rightarrow a^2 = 45$.

Answer: $\frac{x^2}{45} - \frac{y^2}{4} = -1.$