Answer on Question \#45115 - Math - Analytic Geometry

Question

Find an equation in standard form for the hyperbola with vertices at $(0 ; \pm 2)$ and foci at ($0 ; \pm 7$).

Solution

Since the vertices and foci are located on the y-axis, the general equation of this hyperbola has the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$. Find a^{2} and b^{2}. Let $x=0, y= \pm 2$. Then we have
$-\frac{4}{b^{2}}=-1 \Leftrightarrow b^{2}=4$. By hypothesis, a half of focal length c is equal to 7 , so we have $c^{2}=a^{2}+b^{2} \Rightarrow 49=a^{2}+4 \Rightarrow a^{2}=45$.

Answer: $\frac{x^{2}}{45}-\frac{y^{2}}{4}=-1$.

