Find the indicated limit, if it exists.
limit of f of x as x approaches 8 where f of x equals x plus 10 when x is less than 8 and f of x equals 10 minus x when x is greater than or equal to 8

Answer.
$f(x)= \begin{cases}x+10, & x<8 \\ 10-x, & x \geq 8\end{cases}$
Limit of $f(x)$ as x approaches 8 to the left $\quad \lim _{x \rightarrow 8^{-}} f(x)=8+10=18$.
Limit of $f(x)$ as \times approaches 8 to the right $\lim _{x \rightarrow 8^{+}} f(x)=10-8=2$.
We must say that the two-sided limit $\lim _{x \rightarrow 8} f(x)$ does not exist, because two one-sided limits of $f(x)$ differ when x approaches 8 (to the left or to the right).

