Answer on Question \#45111 - Math - Calculus

Use graphs and tables to find the limit and identify any vertical asymptotes of limit of 1 divided by the quantity x minus 5 as x approaches 5 from the left.

Solution

The function is $f(x)=\frac{1}{x-5}$.
The table lists the value of $f(x)$ for several x-values approaches 5 from the left.

x	$f(x)=\frac{1}{x-5}$	$[x, f(x)]$
4.5	$f(x)=\frac{1}{4.5-5}=\frac{1}{-0.5}=-2$	$(4.5,-2)$
4.9	$f(x)=\frac{1}{4.9-5}=\frac{1}{-0.1}=-10$	$(4.9,-10)$
4.99	$f(x)=\frac{1}{4.99-5}=\frac{1}{-0.01}=-100$	$(4.99,-100)$
4.999	$f(x)=\frac{1}{4.999-5}=\frac{1}{-0.001}=-1000$	$(4.999,-1000)$
4.9999	$f(x)=\frac{1}{4.9999-5}=\frac{1}{-0.0001}=-10000$	$(4.9999,-10000)$
4.99999	$f(x)=\frac{1}{4.99999-5}=\frac{1}{-0.00001}=-100000$	$(4.99999,-100000)$
5	$f(x)=\frac{1}{5-5}=-\frac{1}{0}=-\infty$	$(5,-\infty)$

The graph of function $f(x)=\frac{1}{x-5}$ is given below

Observe the graph and table, when x approaches 5 from the left, $(x-5)$ is a small negative number. Thus, the quotient $\frac{1}{x-5}$ is a large negative number and $f(x)$ approaches negative infinity to the left side of $x=5$. So, we can conclude that $x=5$ is a vertical asymptote of the graph of $f(x)$ and

$$
\lim _{x \rightarrow 5_{-}} f(x)=\lim _{x \rightarrow 5_{-}} \frac{1}{x-5}=-\infty
$$

