Answer on Question #45111 – Math - Calculus

Use graphs and tables to find the limit and identify any vertical asymptotes of limit of 1 divided by the quantity x minus 5 as x approaches 5 from the left.

Solution

The function is $f(x) = \frac{1}{x-5}$.

The table lists the value of f(x) for several x-values approaches 5 from the left.

x	$f(x) = \frac{1}{x - 5}$	[x,f(x)]
4.5	$f(x) = \frac{1}{4.5 - 5} = \frac{1}{-0.5} = -2$	(4.5, -2)
4.9	$f(x) = \frac{1}{4.9 - 5} = \frac{1}{-0.1} = -10$	(4.9, -10)
4.99	$f(x) = \frac{1}{4.99 - 5} = \frac{1}{-0.01} = -100$	(4.99, -100)
4.999	$f(x) = \frac{1}{4.999 - 5} = \frac{1}{-0.001} = -1000$	(4.999, -1000)
4.9999	$f(x) = \frac{1}{4.9999 - 5} = \frac{1}{-0.0001} = -10000$	(4.9999, -10000)
4.99999	$f(x) = \frac{1}{4.99999 - 5} = \frac{1}{-0.00001} = -100000$	(4.99999, -100000)
5	$f(x) = \frac{1}{5-5} = -\frac{1}{0} = -\infty$	(5, −∞)

The graph of function $f(x) = \frac{1}{x-5}$ is given below

Observe the graph and table, when x approaches 5 from the left, (x - 5) is a small negative number. Thus, the quotient $\frac{1}{x-5}$ is a large negative number and f(x) approaches negative infinity to the left side of x = 5. So, we can conclude that x = 5 is a vertical asymptote of the graph of f(x) and

$$\lim_{x \to 5_{-}} f(x) = \lim_{x \to 5_{-}} \frac{1}{x - 5} = -\infty.$$

www.AssignmentExpert.com