Answer on Question \#45109 - Math - Calculus

Find the indicated limit, if it exists.
limit of f of x as x approaches 0 where f of x equals $5 x$ minus 8 when x is less than 0 and the absolute value of the quantity negative 4 minus x when x is greater than or equal to 0 .

Solution:

We have

$$
f(x)=\left\{\begin{array}{l}
5 x-8, \quad \text { if } x<0 \\
|-4-x|, \quad \text { if } x \geq 0
\end{array}\right.
$$

Find the indicated limit

$$
\lim _{x \rightarrow 0} f(x)
$$

if it exists. So we have

$$
\lim _{x \rightarrow-0} f(x)=\lim _{x \rightarrow-0}(5 x-8)=-8
$$

and

$$
\lim _{x \rightarrow+0} f(x)=\lim _{x \rightarrow+0}|-4-x|=\lim _{x \rightarrow+0}(4+x)=4
$$

If the one-sided limits are finite but not equal,

$$
\lim _{x \rightarrow-0} f(x) \neq \lim _{x \rightarrow+0} f(x)
$$

then there is a jump discontinuity, which is also called a non-removable discontinuity. Hence $\lim _{x \rightarrow 0} f(x)$ does not exist.

