

Answer on Question #45108 – Math - Calculus

Give an example of a function with both a removable and a non-removable discontinuity.

Solution:

Definition. Let f be a function and let a be a point in its domain. Then f is continuous at the single point $x = a$ provided

$$\lim_{x \rightarrow a} f(x) = f(a)$$

If f is continuous at each point in its domain, then we say that f is continuous.

We are concerned now with determining continuity at the point $x = a$ for a piecewise-defined function. If a piecewise-defined function f is not continuous at $x = a$, then there is a discontinuity which can take one of the following forms:

(i) $\lim_{x \rightarrow a} f(x)$ exists, but $f(a)$ is either not defined or does not equal the limit. Then

there is a “hole in the graph,” which is formally called a **removable discontinuity**.

(ii) If the one-sided limits are finite but not equal,

$$\lim_{x \rightarrow -a} f(x) \neq \lim_{x \rightarrow +a} f(x)$$

then there is a jump discontinuity, which is also called a **non-removable discontinuity**.

(iii) If one or both of the one-sided limits is infinite, then there is a vertical asymptote, which is called an infinite discontinuity.

Let us consider piecewise-defined function (an example of a function with both a removable and a non-removable discontinuity)

$$f(x) = \begin{cases} x, & \text{if } x < 0, \\ 1, & \text{if } x = 0 \\ x^2, & \text{if } 0 < x < 1, \\ x + 1, & \text{if } x \geq 1, \end{cases}$$

If a piecewise-defined function f is not continuous at $x = 0$ and $x = 1$ then there are a discontinuity. For $x = 0$ we have

$$\lim_{x \rightarrow 0^+} f(x) = \lim_{x \rightarrow 0^-} f(x) = 0 \neq f(0) = 1$$

Limit of $f(x)$ exists, but $f(0)$ is not equal to the limit. Then there is a “hole in the graph” or **removable discontinuity**. For $x = 1$ we have

$$\lim_{x \rightarrow -1} f(x) = \lim_{x \rightarrow -1} x^2 = 1 \neq \lim_{x \rightarrow +1} f(x) = \lim_{x \rightarrow +1} (x + 1) = 2$$

then there is a jump discontinuity, which is also called a **non-removable discontinuity**.