

Answer on Question #45106 – Math – Analytical Geometry

Find the center, vertices, and foci of the ellipse with equation $x^2/100 + y^2/36 = 1$

Solution:

$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$

Since $x^2 = (x - 0)^2$ and $y^2 = (y - 0)^2$, the equation above is really:

$$\frac{(x - 0)^2}{100} + \frac{(y - 0)^2}{36} = 1$$

Then the center is at $(h, k) = (0, 0)$. I know that the a^2 is always the larger denominator (and b^2 is the smaller denominator), and this larger denominator is under the variable that parallels the longer direction of the ellipse. Since 100 is larger than 36, then $a^2 = 100$, $a = \pm\sqrt{100} = \pm 10$, and this ellipse is wider (paralleling the x-axis) than it is tall. The value of a also tells me that the vertices are $\sqrt{100} = 10$ units to either side of the center, at $(-10, 0)$ and $(10, 0)$.

Let's find co-vertices of the ellipse:

$$b^2 = 36$$

$$b = \pm\sqrt{36} = \pm 6.$$

Co-vertices are $(-6, 0)$ and $(6, 0)$.

To find the foci, we need to find the value of c . From the equation, I already have a^2 and b^2 , so:

$$\begin{aligned} a^2 - c^2 &= b^2 \\ 100 - c^2 &= 36 \\ c^2 &= 64 \\ c &= 8 \end{aligned}$$

Then the value of c is 8, and the foci are eight units to either side of the center, at $(-8, 0)$ and $(8, 0)$

Answer: center $(0, 0)$,

Vertices a $(-10, 0)$ and $(10, 0)$, $(-6, 0)$ and $(6, 0)$.

foci $(-8, 0)$ and $(8, 0)$