Answer on Question \#45103 - Math - Analytical Geometry

Find the center, vertices, and foci of the ellipse with equation $3 \times 2+6 y 2=18$

Solution:

To be able to read any information from this equation, we'll need to rearrange it to get " $=1$ ", so l'll divide through by 18.
This gives

$$
\begin{gathered}
3 x^{2}+6 y^{2}=18 \\
\frac{3 x^{2}}{18}+\frac{6 y^{2}}{18}=\frac{18}{18} \\
\frac{x^{2}}{6}+\frac{y^{2}}{3}=1
\end{gathered}
$$

Since $x^{2}=(x-0)^{2}$ and $y^{2}=(y-0)^{2}$, the equation above is really:

$$
\frac{(x-0)^{2}}{6}+\frac{(y-0)^{2}}{3}=1
$$

Then the center is at $(\mathrm{h}, \mathrm{k})=(0,0)$. I know that the a^{2} is always the larger denominator (and b^{2} is the smaller denominator), and this larger denominator is under the variable that parallels the longer direction of the ellipse. Since 6 is larger than 3 , then $\mathrm{a}^{2}=6, \mathrm{a}= \pm \sqrt{6}$, and this ellipse is wider (paralleling the x -axis) than it is tall. The value of a also tells me that the vertices are $\sqrt{6}$ units to either side of the center, at $(-\sqrt{6}, 0)$ and $(\sqrt{6}, 0)$.
Let's find co-vertices of the ellipse:

$$
\begin{gathered}
b^{2}=3 \\
b= \pm \sqrt{3}
\end{gathered}
$$

Co-vertices: $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$.
To find the foci, we need to find the value of c. From the equation, I already have a^{2} and b^{2}, so:

$$
\begin{gathered}
a^{2}-c^{2}=b^{2} \\
6-c^{2}=3 \\
c^{2}=3 \\
c=\sqrt{3}
\end{gathered}
$$

Then the value of c is 3 , and the foci are three units to either side of the center, at $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$

Answer: center $(0,0)$,
vertices: $(-\sqrt{6}, 0)$ and $(\sqrt{6}, 0),(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$.
foci $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$

