Answer on Question \#45096 - Math - Analytic Geometry

Problem.

Using projection show that the line passing through $(-1,8,8)$ and $(6,2,0)$ is perpendicular to the line passing through ($4,2,3$) and ($2,1,2$).

Solution.

The direction vector of the first line is $\vec{a}(7,-6,-8)$ and the direction vector of the second line is $\vec{b}(-2,-1,-1)$. The projection of the vector \vec{a} on the vector \vec{b} is equal to

$$
\overrightarrow{a_{0}}=\frac{(\vec{a}, \vec{b})}{|\vec{b}|^{2}} \vec{b}
$$

where (\vec{a}, \vec{b}) is inner product of (\vec{a}, \vec{b}).

$$
\overrightarrow{a_{0}}=\frac{7 \cdot(-2)+(-6) \cdot(-1)+(-8) \cdot(-1)}{(-2)^{2}+(-1)^{2}+(-1)^{2}} \vec{b}=\overrightarrow{0},
$$

so the projection of the vector \vec{a} on the vector \vec{b} is equal to $\overrightarrow{0}$. Hence the vector \vec{a} is perpendicular to the vector \vec{b} or the line passing through $(-1,8,8)$ and $(6,2,0)$ is perpendicular to the line passing through $(4,2,3)$ and $(2,1,2)$ (\vec{a} and \vec{b} are direction vectors of this lines).

