Answer on Question \#45095 - Math- Analytic Geometry

Problem.

Show that the angle between the two lines in which the plane $x-y+2 z=0$ intersects the cone $x^{\wedge} 2+y^{\wedge} 2-4 z^{\wedge} 2+6 y z=0$ is tan inverse of (under-root $6 / 7$).

Solution.

The lines of intersection have equation

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-4 z^{2}+6 y z=0 \\
x-y+2 z=0 \\
z=t
\end{array}\right.
$$

where $t \in \mathbb{R}$.
The system

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-4 z^{2}+6 y z=0 \\
x-y+2 z=0 \\
z=t
\end{array}\right.
$$

is equivalent to

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-4 t^{2}+6 y t=0 \\
x=y-2 t \\
z=t
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
y^{2}-4 y t+4 t^{2}+y^{2}-4 t^{2}+6 y t=0 \\
x=y-2 t \\
z=t
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
y(y+t)=0 \\
x=y-2 t \\
z=t
\end{array}\right.
$$

We obtain two lines

$$
\left\{\begin{array} { l }
{ x = - 2 t ; } \\
{ y = 0 ; } \\
{ z = t ; }
\end{array} \text { and } \left\{\begin{array}{l}
x=-3 t \\
y=-t \\
z=t
\end{array}\right.\right.
$$

where t is real parameter.
The direction vector of the first line is $v_{1}=(-2,0,1)$ and the direction vector of the second line is $v_{2}=(-3,-1,1)$. The angle between the two lines is equal to the angle between the direction vectors of this two lines.

$$
\begin{aligned}
\cos \left(\widehat{v_{1}, v_{2}}\right) & =\frac{\left(v_{1}, v_{2}\right)}{\left|v_{1}\right| \cdot\left|v_{2}\right|}=\frac{6+1}{\sqrt{5} \cdot \sqrt{11}}=\sqrt{\frac{49}{55}} \\
\tan ^{2}\left(\widehat{v_{1}, v_{2}}\right) & =\frac{1}{\cos ^{2}\left(\widehat{v_{1}, v_{2}}\right)}-1=\frac{55}{49}-1=\frac{6}{49}
\end{aligned}
$$

The $\left(\widehat{v_{1}, v_{2}}\right)=\arctan \frac{\sqrt{6}}{7}$, as $\cos \left(\widehat{v_{1}, v_{2}}\right)$ is positive.
Therefore, the angle between two lines is equal to $\arctan \frac{\sqrt{6}}{7}$.

