Answer on Question \#45094 - Math - Analytic Geometry

Task:

Find the centre and radius of the circle $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 x+2 y+4 z=3,2 x-y-z=3$.

Solution:

The equation $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 x+2 y+4 z=3$ can be rewriten in the form
$(x+1)^{\wedge} 2+(y+1)^{\wedge} 2+(z+2)^{\wedge} 2=9$. As we can see this is a sphere with centre at $(-1,-1,-2)$ and radius 3 .
Since the circle lies in the plane $2 x-y-z=3$. Than the vector $(2,-1,-1)$ is perpendicular the circle. The line that passes through the centre of the sphere and has directing vector $(2,-1,-1)$ is $(x+1) / 2=(y+1) /(-1)=(z+2) /(-1)$. So, the centre of the circle is a point that is in the intersection of the line $(x+1) / 2=(y+1) /(-1)=(z+2) /(-1)$ and of the plane $2 x-y-z=3$.

Solving this we get a point $\mathrm{x}=1 / 4, \mathrm{y}=-3 / 4, \mathrm{z}=-7 / 4$.
Also it can be easily seen that the point $x=0, y=-3, z=0$ belongs to the circle.
So the radius of the circle is the distance between points $(0,-3,0)$ and $(1 / 4,-3 / 4,-7 / 4)$ and it is equal to 1.92 .

Answer: 1.92.

