Answer on Question \#45093 - Math - Analytic Geometry
 Problem.

Under what conditions on (alpha), the spheres $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+($ alpha $) x-y=0$ and $x^{\wedge} 2+Y^{\wedge} 2+$ $z^{\wedge} 2+x+2 z+1=0$ intersect each other at an angle of $45^{\wedge} 0$.

Solution.

The first sphere has equation $\quad x^{2}+y^{2}+z^{2}+\alpha x-y=0$ or

$$
\left(x+\frac{\alpha}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}+z^{2}=\frac{\alpha^{2}}{4}+\frac{1}{4} .
$$

Hence the first sphere has center $\left(-\frac{\alpha}{2}, \frac{1}{2}, 0\right)$ and radius $\sqrt{\frac{\alpha^{2}}{4}+\frac{1}{4}}$.
The second sphere has equation $x^{2}+y^{2}+z^{2}+x+2 z+1=0$ or

$$
\left(x+\frac{1}{2}\right)^{2}+y^{2}+(z+1)^{2}=\frac{1}{4}
$$

Hence the first sphere has center $\left(-\frac{1}{2}, 0,-1\right)$ and radius $\frac{1}{2}$.
Suppose that (x_{0}, y_{0}, z_{0}) is point from intersection of spheres. Therefore

$$
x_{0}^{2}+y_{0}^{2}+z_{0}^{2}+\alpha x_{0}-y_{0}=0
$$

and

$$
x_{0}^{2}+y_{0}^{2}+z_{0}^{2}+x_{0}+2 z_{0}+1=0
$$

The angle between spheres is equal to the angle to tangent planes at point (x_{0}, y_{0}, z_{0}). The angle between planes is equal to the angle between normal vectors of these planes. The normal vectors of tangent planes at point $\left(x_{0}, y_{0}, z_{0}\right)$ are $\left(x_{0}+\frac{\alpha}{2}, y_{0}-\frac{1}{2}, z_{0}\right)$ and $\left(x_{0}+\frac{1}{2}, y_{0}, z_{0}+1\right)$ (these are the vectors from centers of the spheres to point) $\left(x_{0}, y_{0}, z_{0}\right)$. Therefore the angle between spheres is equal to the angle between vectors $\left(x_{0}+\frac{\alpha}{2}, y_{0}-\frac{1}{2}, z_{0}\right)$ and $\left(x_{0}+\frac{1}{2}, y_{0}, z_{0}+1\right)$. Hence

$$
\frac{x_{0}^{2}+\frac{\alpha x_{0}}{2}+\frac{x_{0}}{2}+\frac{\alpha}{4}+y_{0}^{2}-\frac{y_{0}}{2}+z_{0}^{2}+z_{0}}{\sqrt{\left(x_{0}+\frac{\alpha}{2}\right)^{2}+\left(y_{0}-\frac{1}{2}\right)^{2}+z_{0}^{2}} \cdot \sqrt{\left(x_{0}+\frac{1}{2}\right)^{2}+y_{0}^{2}+\left(z_{0}+1\right)^{2}}}=\cos 45^{\circ}=\frac{\sqrt{2}}{2} .
$$

or

$$
x_{0}^{2}+y_{0}^{2}+z_{0}^{2}+\alpha x_{0}-y_{0}+x_{0}^{2}+y_{0}^{2}+z_{0}^{2}+x_{0}+2 z_{0}=\frac{\sqrt{2}}{2} \cdot \sqrt{\frac{\alpha^{2}}{4}+\frac{1}{4}}-\frac{\alpha}{4} .
$$

Then

$$
-1=\frac{\sqrt{2}}{2} \cdot \sqrt{\frac{\alpha^{2}}{4}+\frac{1}{4}}-\frac{\alpha}{4}
$$

or

$$
\alpha-4=\sqrt{2\left(\alpha^{2}+1\right)}
$$

Therefore $\alpha>4$ and

$$
\begin{gathered}
\alpha^{2}-8 \alpha+16=2 \alpha^{2}+2, \\
\alpha^{2}+8 \alpha-14=0 \\
\alpha=\frac{-8 \pm \sqrt{64+4 \cdot 8 \cdot 14}}{2}=-4 \pm \sqrt{16+8 \cdot 14}=-4 \pm 8 \sqrt{2} .
\end{gathered}
$$

Hence $\alpha=8 \sqrt{2}-4$, as $\alpha>4$.
Answer. $\alpha=8 \sqrt{2}-4$.

