

**Answer on Question #45092 – Math - Analytic Geometry
Problem.**

Let R be the point which divides the line segment joining P(2,1,0) and Q(-1,3,4) in the ratio 1:2 such that PR < PQ.

Find the equation of the line passing through R and parallel to the line $x/2=y/1=z/3$.

Solution.

Suppose that R has coordinates (a, b, c) . Then \vec{PQ} has coordinates $(-3, 2, 4)$ and \vec{PR} has coordinates $(a - 2, b - 1, c)$. $\vec{PR} = \frac{1}{3}\vec{PQ}$, so $\frac{1}{3}(-3, 2, 4) = (a - 2, b - 1, c)$. Therefore $a = 1$, $b = \frac{5}{3}$, $c = \frac{4}{3}$.

The line parallel to $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ has direction vector $(2, 1, 3)$. Hence the equation of the line passing through R and parallel to the line $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ is $\frac{x-1}{2} = \frac{y-\frac{5}{3}}{1} = \frac{z-\frac{4}{3}}{3}$, i.e. $\frac{x-1}{2} = \frac{3y-5}{3} = \frac{3z-4}{9}$.

Answer: $\frac{x-1}{2} = \frac{3y-5}{3} = \frac{3z-4}{9}$.