Answer on Question \#45090 - Math - Analytic Geometry Problem.
Find the points of intersection of the conics $x^{\wedge} 2 / 4-y^{\wedge} 2 / 9=1$ and $x^{\wedge} 2 / 6+y^{\wedge} 2 / 9=1$.

## Solution.

The points of intersection of the conics is the solution of the system

$$
\left\{\begin{array}{l}
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
\frac{x^{2}}{6}+\frac{y^{2}}{9}=1
\end{array}\right.
$$

The system is equivalent to

$$
\left\{\begin{array}{l}
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
\left(\frac{x^{2}}{6}+\frac{y^{2}}{9}\right)+\left(\frac{x^{2}}{4}-\frac{y^{2}}{9}\right)=1+1
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
\frac{x^{2}}{6}+\frac{x^{2}}{4}=2
\end{array}\right.
$$

Then $x^{2}=4.8$ and $y^{2}=1.8$.
Hence the points of intersection are $(-\sqrt{4.8},-\sqrt{1.8}),(-\sqrt{4.8}, \sqrt{1.8}),(\sqrt{4.8},-\sqrt{1.8}),(\sqrt{4.8}, \sqrt{1.8})$.
Answer: $(-\sqrt{4.8},-\sqrt{1.8}),(-\sqrt{4.8}, \sqrt{1.8}),(\sqrt{4.8},-\sqrt{1.8}),(\sqrt{4.8}, \sqrt{1.8})$.

