Answer on Question \#45089 - Math - Analytic Geometry

Problem.

Find the vertices, eccentricity, foci and asymptotes of the hyperbola $x^{\wedge} 2 / 8-y^{\wedge} 2 / 4=1$.
Also trace it.
Under what conditions on (lamda) the line x - (lamda) $y+2=0$ will be tangent to this hyperbola? Explain geometrically.

Solution.

The equation of the hyperbola is $\frac{x^{2}}{8}-\frac{y^{2}}{4}=1$, so $a^{2}=8$ and $b^{2}=4$ or $a=2 \sqrt{2}$ and $b=2$. Then $c^{2}=a^{2}+b^{3}=8+4=12$, so $c=2 \sqrt{3}$, the vertices are $(-2 \sqrt{2}, 0)$ and $(2 \sqrt{2}, 0)((-a, 0)$ and $(a, 0))$, the eccentricity is $e=\frac{c}{a}=\frac{2 \sqrt{3}}{2 \sqrt{2}}=\frac{\sqrt{6}}{2}$, the foci are $(-2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)((-c, 0)$ and $(c, 0)$), the asymptotes are $y= \pm \frac{1}{\sqrt{2}} x\left(y= \pm \frac{b}{a} x\right)$.

The equation of tangent line to this hyperbola that passes throught point $\left(x_{0}, y_{0}\right)$ is $\frac{x x_{0}}{8}-\frac{y y_{0}}{4}=1$. We should find such λ that $\quad-\frac{x}{2}+\frac{\lambda y}{2}=1(x-\lambda y+2=0)$.
Then

$$
-\frac{1}{2}=\frac{x_{0}}{8} \text { and } \quad-\frac{\lambda}{2}=\frac{y_{0}}{4}
$$

or

$$
x_{0}=-4 \text { and } y_{0}=-2 \lambda,
$$

but $\frac{x_{0}^{2}}{8}-\frac{y_{0}^{2}}{4}=1$, so $2-\lambda^{2}=1$. Therefore $\lambda= \pm 1$.

Hence there are two tangent lines $x+y+2=0$ (blue line) and $x-y+2=0$ (red line). There are two tangent lines because the hyperbola is symmetric with respect to x -axis.

