Answer on Question \#45084 - Math - Analytic Geometry

Problem.

Find the equation of the plane which passes through the line of intersection of the planes $2 x+y$ $2 z=6$ and $2 x+3 y+6 z=5$ and makes equal angles with these planes.

Solution.

Let α is the plane equation of which we should find and (a, b, c) is normal vector of plane α. The plane α makes equal angles with planes $2 x+y-2 z=6$ and $2 x+3 y+6 z=5$ if and only if normal vectors of α makes equal angles with normal vectors of planes $2 x+y-2 z=6$ and $2 x+$ $3 y+6 z=5$ or when cosines of these angles are equal. The normal vectors of planes $2 x+y-$ $2 z=6$ and $2 x+3 y+6 z=5$ are $(2,1,-2)$ and $(2,3,6)$ respectivly. Let φ_{1} is angle between (a, b, c) and ($2,1,-2$) and φ_{2} is angle between (a, b, c) and $(2,3,6)$. From inner product formula

$$
\begin{aligned}
\cos \varphi_{1} & =\frac{2 a+b-2 c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2^{2}+1^{2}+(-2)^{2}}} \\
\cos \varphi_{2} & =\frac{2 a+3 b+6 c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2^{2}+3^{2}+6^{2}}}
\end{aligned}
$$

So $\frac{2 a+b-2 c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2^{2}+1^{2}+(-2)^{2}}}=\frac{2 a+3 b+6 c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2^{2}+3^{2}+6^{2}}}\left(\cos \varphi_{1}=\cos \varphi_{2}\right)$. Hence
$14 a+7 b-14 c=6 a+9 b+18 c$
or

$$
8 a-2 b-32 c=0 \text { or } b=4 a-16 c .
$$

The line of intersection of the planes $2 x+y-2 z=6$ and $2 x+3 y+6 z=5$ has equation

$$
\left\{\begin{array}{c}
2 x+y-2 z=6 ; \\
2 x+3 y+6 z=5 \\
z=t
\end{array}\right.
$$

where $t \in \mathbb{R}$.
Then $y=-\frac{8 t+1}{2}$ and $x=\frac{12 t+13}{4}$.
Then the equation of plane α is

$$
a\left(x-\frac{12 t+13}{4}\right)+b\left(y+\frac{8 t+1}{2}\right)+c(z-t)=0
$$

or

$$
a x+b y+c z-\frac{13 a}{4}+\frac{b}{2}+(-3 a+4 b-c) t=0
$$

is for all $t \in \mathbb{R}$.
Hence for all t

$$
(-3 a+4 b-c) t=0
$$

Therefore

$$
3 a-4 b+c=0,
$$

Hence $3 a-4 \cdot(4 a-16 c)+c=0($ as $b=4 a-16 c),-13 a+65 c=0, a=\frac{65}{13} c$. Then $a=\frac{65}{13} c$ and $b=4 c$. The equation of α plane is

$$
\begin{gathered}
\frac{65}{13} x+4 y+z-\frac{65}{4}+2=0 \\
\frac{65}{13} x+4 y+z-\frac{57}{4}=0
\end{gathered}
$$

Answer: $\frac{65}{13} x+4 y+z-\frac{57}{4}=0$

