Answer on Question \#45083 - Math - Analytic Geometry

Question

Find the angle between the lines $x=1, z-y=0$ and $2 x-y=-1, z=1$.

Solution

The equation of the first line could be rewritten as $\frac{x-1}{0}=\frac{y}{1}=\frac{z}{1}$, and the equation of the second line could be rewritten as $\frac{x+\frac{1}{2}}{\frac{1}{2}}=\frac{y}{1}=\frac{z-1}{0}$. Hence the direction vector of the first line is $(0,1,1)$ and the direction vector of the second line is $\left(\frac{1}{2}, 1,0\right)$. The angle between lines equals the angle between direction vectors, hence $\cos \alpha=\frac{0 \cdot \frac{1}{2}+1 \cdot 1+1 \cdot 0}{\sqrt{0^{2}+1^{2}+1^{2}} \sqrt{\left(\frac{1}{2}\right)^{2}+1^{2}+0^{2}}}=\frac{1}{\sqrt{2} \cdot \sqrt{\frac{1}{4}+1}}=\sqrt{\frac{2}{5}}, \alpha=\arccos \sqrt{\frac{2}{5}}$ (approximately 51°).
Answer: $\alpha=\arccos \sqrt{\frac{2}{5}}$.

