Answer on Question \#45082 - Math - Analytic Geometry

Problem.

For what value(s) of α, the conicoid $x^{\wedge} 2+y^{\wedge} 2+\alpha z^{\wedge} 2+2 y z+x y+x+2 y+z+3=0$ has a unique centre? Give reason for your answer.

Solution.

Denoting the given expression by $F(x, y, z)$ we get from

$$
\frac{\partial F}{\partial x}=0, \frac{\partial F}{\partial y}=0, \frac{\partial F}{\partial z}=0
$$

or

$$
\begin{gathered}
2 x+y+1=0 \\
2 y+x+2=0 \\
2 \alpha z+2 y+1=0
\end{gathered}
$$

Let $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 2 \alpha\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cccc}2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ 0 & 2 & 2 \alpha & 1\end{array}\right]$.
The conicoid $x^{2}+y^{2}+\alpha z^{2}+2 y z+x y+x+2 y+z+3=0$ has a unique centre if rank $A=$ rank $A^{\prime}=3$.

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 2 & 2 \alpha
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & -3 & 0 \\
1 & 2 & 0 \\
0 & 2 & 2 \alpha
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -3 & 0 \\
0 & 2 & 2 \alpha
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -3 & 0 \\
0 & 0 & 2 \alpha
\end{array}\right]
$$

Hence rank $A=3$ if $\alpha \neq 0$.

$$
A^{\prime}=\left[\begin{array}{cccc}
2 & 1 & 0 & 1 \\
1 & 2 & 0 & 2 \\
0 & 2 & 2 \alpha & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & -3 & 0 & -3 \\
1 & 2 & 0 & 2 \\
0 & 2 & 2 \alpha & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & -3 & 0 & -3 \\
0 & 2 & 2 \alpha & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & -3 & 0 & -3 \\
0 & 0 & 2 \alpha & -1
\end{array}\right]
$$

Hence rank $A^{\prime}=3$.
Therefore conicoid has a unique centre if $\alpha \neq 0$.
Answer: $\alpha \neq 0$.

