Answer on Question \#45075 - Math - Analytic Geometry

Find the point of intersection of the line $x / 4=y=z-1$ and the plane $2 x+y+z=5$. Also find the angle between them.

Solution.

To find the point of intersection of the line

$$
\begin{equation*}
\frac{x}{4}=y=z-1 \tag{1}
\end{equation*}
$$

and the plane
$2 x+y+z=5$,
we solve the system of linear equations
$\left\{\begin{array}{l}\frac{x}{4}=y=z-1 \\ 2 x+y+z=5\end{array}\right.$
Express variables x and z as functions of y on the basis of (1), we come to $x=4 y, z=y+1$.

Plug these expressions into the second equation (2) of the system (3):
$2 x+y+z=5, \quad 2 * 4 y+y+y+1=5$,
Collect similar terms: $10 y=4$, divide both sides by 10 and obtain $y=\frac{4}{10}, y=\frac{2}{5}$.
Other coordinates of this point are $x=4 y=4 * \frac{4}{10}=\frac{8}{5}, z=y+1=\frac{2}{5}+1=\frac{7}{5}$.
Thus, the point of intersection of the line and plane is $(x, y, z)=\left(\frac{8}{5}, \frac{2}{5}, \frac{7}{5}\right)$.
Vector $N=(A, B, C)=(2,1,1)$ is the normal to the plane (2), vector $\boldsymbol{u}=(l, m, n)=(4,1,1)$ is the direction vector of line (1).

The angle between the line and the plane is defined as the complementary angle θ of the angle φ between the direction vector \boldsymbol{u} of the line and the normal \boldsymbol{N} to the plane. For this angle, one has the formula $\sin (\theta)=\cos (\varphi)=\frac{A l+B m+C n}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$ $=\frac{2 * 4+1 * 1+1 * 1}{\sqrt{2^{2}+1^{2}+1^{2}} \sqrt{4^{2}+1^{2}+1^{2}}}=\frac{10}{\sqrt{6 * 18}}=\frac{10}{6 \sqrt{3}}=\frac{5}{3 \sqrt{3}}$, hence $\theta=1.295$ radians or $\theta=74.21^{\circ}$

