Answer on Question \#45072 - Math - Analytic Geometry

Problem.

Check whether the following statements are true or false. Justify your answer with a short explanation or a counter example.
(i) Any line through the origin cuts the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=4$ at exactly two points.
(ii) The plane making intercept at the z-axis and parallel to the xy-plane intersects the cone $x^{\wedge} 2+y^{\wedge} 2=z^{\wedge} 2\left(\tan\right.$ theta) ${ }^{\wedge} 2$ in a circle.
(iii) There exists no line with $1 /$ under-root3 ,1/under-root2 ,1/under-root6 as direction cosines.
(iv) The tangent planes at the extremities of any axis of an ellipsoid are perpendicular.
(v) A section of an elliptic paraboloid by a plane is always an ellipse.
(vi) The curve $x y^{\wedge} 2+y x^{\wedge} 2=0$ is symmetric about the origin.
(vii) There exists a unique line which is perpendicular to the lines $x=y=z / 2$ and $x=y=-z$.
(viii) The plane $3 x+4 y+2 z=1$ touches the conicoid $3 x^{\wedge} 2+2 y^{\wedge} 2=z^{\wedge} 2=1$.
(ix) The $x y$ - plane intersects the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 x-z=2$ in a great circle.
(x) Non degenerate conics are non-central.

Solution.

(i) The statement is true.

The lines through the origin has equation $x=\alpha t, y=\beta t, z=\gamma t$ (where $\alpha, \beta, \gamma \in \mathbb{R}$). This line intersect sphere at $\left(\alpha t_{0}, \beta t_{0}, \gamma t_{0}\right)$ and $\left(-\alpha t_{0},-\beta t_{0},-\gamma t_{0}\right)\left(\right.$ where $\left.\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) t_{0}^{2}=4\right)$.
(ii) The statement is false.

The equation of xy-plane is $z=0$. Hence if $\left(x_{0}, y_{0}, z_{0}\right)$ is the point from the intersection, then $z_{0}=0$ and $x_{0}^{2}+y_{0}^{2}=z_{0}^{2} \tan ^{2} \theta=0$ or $x_{0}=0$ and $y_{0}=0$. Therefore xy-plane intersects the cone $x^{2}+y^{2}=z^{2}(\tan \theta)^{2}$ in a point.
(iii) The statement is false.

The line $\frac{x}{1 / \sqrt{3}}=\frac{y}{1 / \sqrt{2}}=\frac{z}{1 / \sqrt{6}}$ has direction vector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}\right) \cdot\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{6}}\right)^{2}=1$, so direction the direction cosines are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}$.
(iv) The statement is false.

The tangent planes at the extremities of a x-axis of an ellipsoid $x^{2}+y^{2}+z^{2}=1$ are $x=1$ and $x=-1$. This planes are parallel.
(v) The statement is false.
$z=x^{2}+y^{2}$ is elliptic paraboloid. The intersection of $z=x^{2}+y^{2}$ with plane $y=0$ is $z=x^{2}$.
(vi) The statement is true.

Let $l: x y^{2}+y x^{2}=0$. If $(x, y) \in l$, then $(-x,-y) \in l\left(\right.$ as $x y^{2}+y x^{2}=0=-\left(x y^{2}+y x^{2}\right)=$ $\left.(-x)(-y)^{2}+(-y)(-x)^{2}\right)$. Threrefore the curve is symmetric about the origin.
(vii) The statement is true.

Suppose that the direction vector of line l perpendicular to the lines $x=y=\frac{z}{2}$ and $x=y=-z$ is (a, b, c). Then $1 \cdot a+1 \cdot b+2 \cdot c=0$ and $1 \cdot a+1 \cdot b-c=0$. Hence $c=0$ and $a+b=0$. Therefore the direction vector of line l is $(1,-1,0)$. If $\left(x_{0}, y_{0}, z_{0}\right)$ is point of intersection of lines l and $x=y=-z$, then $\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, x_{0},-x_{0}\right)$. Hence the line l has equation $x=t+x_{0}, y=$ $-t+x_{0}, z=-x_{0}$. There should exist point of intersection of l and $x=y=\frac{z}{2}$. Hence there should exist t_{0} such that $t_{0}+x_{0}=-t_{0}+x_{0}=-\frac{x_{0}}{2}$, so $t_{0}=x_{0}=0$. Hence the equation of l is $x=t$, $y=-t, z=0$, so there exist a unique line.
(viii) The statement is false.

The coincoid $3 x^{2}+2 y^{2}=z^{2}=1$ is union two curves (ellipses).
(ix) The statement is true.

The intersection is curve $z=0, x^{2}+y^{2}+2 x=2$ or $(x+1)^{2}+y^{2}=(\sqrt{3})^{2}$ it is circle.
(x) The statement is false.

The conic $x^{2}+y^{2}+z^{2}=1$ is non degenerate and has center $(0,0,0)$.
www.AssignmentExpert.com

