Answer on Question \#45017 - Math - Statistics and Probability

Consider the trash bag case. The mean and the standard deviation of the sample of $n=40$ trash bag breaking strengths are $\bar{x}=50.575$ and $s=1.6438$. Test $H_{0}: \mu=50$ versus $H_{a}: \mu>50$ by setting α equal to 0.05 and using a critical value rule. Also, interpret the (computer calculated) p-value of 0.0135 for the test.

Solution

Reject $H_{0}: \mu=50$ in favor of $H_{a}: \mu>50$ if and only if the test statistics z is greater than z_{α}.

$$
z=\frac{\bar{x}-50}{\frac{s}{\sqrt{n}}}=\frac{50.575-50}{\frac{1.6438}{\sqrt{40}}}=2.2123
$$

Since 2.2123 is greater than $z_{0.05}=1.645$, we can reject $H_{0}: \mu=50$ in favor of $H_{a}: \mu>50$. Therefore, we conclude that the mean breaking strength of the trash bags exceeds 50 pounds.
p-value of 0.0135 says that, if $H_{0}: \mu=50$ is true, then only 135 in 10000 of all possible test statistic values are at least as, or extreme, as the value $z=2.2123$. We can reject H_{0} in favor of H_{a} at level $\alpha=0.05$ because $p-$ value $=0.0135<\alpha=0.05$.

