Answer on Question \#44957 - Math - Statistics and Probability

The marks obtained by a number of students in a certain subject are approximately normally distributed with mean 65 and standard deviation 5 . If 3 students are selected at random from this group, what is the probability that at least 1 of them would have scored above 75 ?

Solution

Let event $A="$ at least 1 of 3 students would have scored above 75"
The complement of A is $\bar{A}=$ "none of 3 students would have scored above 75 "
$\bar{A}=B \cap C \cap D$ is intersection of three events B, C, D, where
$B=$ "the first student wouldn`t have scored above 75 "= = "the first student would have scored less than 75"; \(C=\) "the second student wouldn`t have scored above 75 "=
= "the second student would have scored less than 75 ";
$D=$ "the third student wouldn`t have scored above 75 "=
$="$ the third student would have scored less than 75 ".
B, C, D are jointly statistically independent events.
Let X represents the marks obtained by a student. X is normally distributed with mean 65 and standard deviation 5.

Variable $Z=\frac{X-65}{5}$ has the standard normal distribution
$x=75$ gives $z=\frac{75-65}{5}=2$.
Evaluate $P(B)=P(C)=P(D)=P(X<75)=P\left(\frac{X-65}{5}<\frac{75-65}{5}\right)=P(Z<2)=0.9772$ (refer to statistical tables)

$$
P(\bar{A})=P(B \cap C \cap D)=P(B) P(C) P(D)=P(B)^{3}=0.9772^{3} \approx 0.9931
$$

Law of complement $P(A)=1-P(\bar{A}) \approx 1-0.9931=0.0069$.
Answer: 0.0069.

