Answer on Question \#44952 - Math - Statistics and Probability

Problem.

A and B alternatively throw a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6 . If A begins, show that his chance of winning is $30 / 61$.

Solution.

A could win the game when he rolls a 6 at the 1 -st throw or when he rolls 6 at the k-th throw $(k>1)$ and in the first $k-1$ throws A does not roll a 6 and in the first $k-1$ throws B does not roll a 7.
There are $6 \cdot 6=36$ different combination, that could be obtained in the each throw. There are 5 possibilities to obtain $6(1+5=2+4=3+3=4+2=5+1=6)$ and 6 possibilities to obtain $7(1+6=2+5=3+4=4+3=5+2=6+1=7)$. Therefore

$$
\begin{array}{r}
P(A \text { roll a } 6 \text { at some throw })=\frac{5}{36}, \\
P(A \text { does not roll a } 6 \text { at some throw })=1-\frac{5}{36}=\frac{31}{36}, \\
P(B \text { roll a } 7 \text { at some throw })=\frac{7}{36}, \\
P(B \text { does not roll a 7at some throw })=1-\frac{6}{36}=\frac{30}{36}=\frac{5}{6},
\end{array}
$$

$P(A$ does not roll a 6 at some throw and then B does not roll a 7 at some throw $)=\frac{31}{36} \cdot \frac{5}{6}$

$$
=\frac{155}{216}
$$

Hence

$$
P(A \text { wins at the } k-\text { th throw })=\left(\frac{155}{216}\right)^{k-1} \cdot \frac{5}{36}
$$

The total probability that A wins equals

$$
P(A \text { wins })=\sum_{k=0}^{\infty} P(A \text { wins at the } k-\text { th throw })=\sum_{k=0}^{\infty}\left(\frac{155}{216}\right)^{k-1} \cdot \frac{5}{36}=\frac{\frac{5}{36}}{1-\frac{155}{216}}=\frac{30}{61}
$$

as the sum of infinite geometric progression.

