Answer on Question \#44946 - Math - Statistics and Probability

Suppose A and B are mutually exclusive events for which $P(A)=0.3$ AND $P(B)=0.5$, What is the probability that (a) either A or B occurs and (b) B occurs but A does not ?

Solution

(a) The probability that either A or B occurs $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)=0.8$. $P(A \cap B)=0$, because A and B are mutually exclusive events
(b) By definition $P(\bar{A} \mid B)=\frac{P(\bar{A} \cap B)}{P(B)}$.
$P(\bar{A} \mid B)=1$, because A and B are mutually exclusive (if B occurred, A will certainly not occur, so \bar{A} will certainly occur). So, we get $P(\bar{A} \cap B)=P(B) P(\bar{A} \mid B)=P(B)=0.5$.

