Answer on Question \#44929 - Math - Linear Algebra

Problem.

Let $P^{\wedge} 3=\left\{a x^{\wedge} 3+b x^{\wedge} 2+c x+d!a, b, c, d \in R\right\}$. Check whether $f(x)=x^{\wedge} 2+2 x+1$ is $\operatorname{in}[S]$, the subspace of $P^{\wedge} 3$ generated by $S=\left\{3 x^{\wedge} 2+1,2 x^{\wedge} 2+x+1\right\}$.

If $f(x)$ is in [S], write f as a linear combination of elements in S.

If $f(x)$ is not in [S], find anotherpolynomial $g(x)$ of degree at most two such that $f(x)$ is in the span of $S U\{g(x)\}$.

Alsowrite f as a linear combination of elements in $S U\{g(x)\}$.

Solution.

$x^{2}+2 x+1=2\left(2 x^{2}+x+1\right)-\left(3 x^{2}+1\right)$, so $f(x) \in[S]$.

