Answer on Question \#44926 - Math - Linear Algebra

Problem.

There is no matrix which is Hermitian as well as Unitary.

Solution.

The statement is false.
Let $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right]$ (where $0 \leq \alpha \leq 2 \pi$).
$\overline{A^{T}}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right]=A$, so A is Hermitian.
$\overline{A^{T}} A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so A is unitary.
Hence A is Hermitian as well as unitary.

