Answer on Question \#44925 - Math - Linear Algebra

Problem.

State if the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

No skew-symmetric matrix is diagonalisable.

Solution.

The statement is false.
Let $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$ and $Q=\left[\begin{array}{cc}-\frac{i}{2} & \frac{1}{2} \\ \frac{i}{2} & \frac{1}{2}\end{array}\right]$. Then $Q^{-1}=\left[\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right]$ (as $\operatorname{det} Q=-\frac{i}{2}$).
Hence
$D=Q A Q^{-1}=\left[\begin{array}{cc}-\frac{i}{2} & \frac{1}{2} \\ i & \frac{1}{2}\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}-\frac{i}{2} & \frac{1}{2} \\ \frac{i}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{cc}2+i & 2-i \\ 1-2 i & 1+2 i\end{array}\right]=\left[\begin{array}{cc}1-2 i & 0 \\ 0 & 1+2 i\end{array}\right]$.
Therefore A is diagonalisable.

