Answer on Question \#44924 - Math - Linear Algebra:

State if the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

If a linear operator is diagonalisable, its minimal polynomial is the same as the characteristic polynomial.

Solution.

It's false. Counterexample:

$$
L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L\binom{x}{y}=A\binom{x}{y}, A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) ;
$$

Prove that the minimal polynomial of L is $f(x)=x-2$.

$$
f(A)=A-2 E=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)-2 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=0 ;
$$

$f(A)=0$ and f is of the degree 1 . So, f is minimal polynomial.
Compute it's characteristic polynomial $\chi(x)$.

$$
\chi(x)=\operatorname{det}(x E-A)=\left|\begin{array}{cc}
x-2 & 0 \\
0 & x-2
\end{array}\right|=(x-2)^{2} \neq f(x) .
$$

