Answer on Question \#44922 - Math - Linear Algebra

Problem.

State if the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

If the characteristic polynomial of a linear transformation is $(x-1)(x-2)$, its minimal polynomial is $x-1$ or $x-2$.

Solution.

The statement is false.
Suppose that $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ is a matrix of linear transformation. The characteristic polynomial of a linear transformation is $(x-1)(x-2)$, as
$\operatorname{det}\left[\begin{array}{cc}1-x & 0 \\ 0 & 2-x\end{array}\right]=(1-x)(2-x)=(x-1)(x-2)$.
$x-1$ isn't minimal polynomial of $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, as $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
$x-2$ isn't minimal polynomial of $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, as $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]-2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

