Answer on Question \#44918 - Math - Linear Algebra

Problem.

State if the following statements are true and which are false? Justify your answer with a short proof or a counterexample.

If $\{v 1, v 2, \ldots ., v n\}$ is a basis for vector space V, then $\{v 1+v 2++v n, v 2, \ldots ., v n\}$ is also a basis for V

Solution.

The statement is true.
We need to show that $\left\{v_{1}+v_{2}+\cdots+v_{n}, v_{2}, \ldots, v_{n}\right\}$ is a set of linearly independent vectors and each element of V can be represented as linear combination of vectors from set.
Suppose that vectors $v_{1}+v_{2}+\cdots+v_{n}, v_{2}, \ldots, v_{n}$ are linearly dependent. Then there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in P$ (where P is a field) such that

$$
\lambda_{1}\left(v_{1}+v_{2}+\cdots+v_{n}\right)+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0
$$

or

$$
\lambda_{1} v_{1}+\left(\lambda_{1}+\lambda_{2}\right) v_{2}+\cdots+\left(\lambda_{1}+\lambda_{n}\right) v_{n}=0
$$

but $\lambda_{1} v_{1}+\left(\lambda_{1}+\lambda_{2}\right) v_{2}+\cdots+\left(\lambda_{1}+\lambda_{n}\right) v_{n} \neq 0$, as vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent. Hence $v_{1}+v_{2}+\cdots+v_{n}, v_{2}, \ldots, v_{n}$ are linearly independent.
If $u \in V$, then there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in P\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right.$ is a basis $)$, such that $u=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}$
or

$$
u=\lambda_{1}\left(v_{1}+v_{2}+\cdots v_{n}\right)+\left(\lambda_{2}-\lambda_{1}\right) v_{2}+\cdots+\left(\lambda_{n}-\lambda_{1}\right) v_{n}
$$

Hence each element of V can be represented as linear combination of vectors from set $\left\{v_{1}+v_{2}+\cdots+v_{n}, v_{2}, \ldots, v_{n}\right\}$.

