Answer on Question \#44828 - Math - Statistics and Probability

At a cafeteria the customers arrive at an average of $\lambda=0.3$ per minute. The probability that a) exactly 2 customers arrive in a 10 minute span b) 2 or more customers arrive in a 10 minute span c) one customer arrives in a 5 minute span and one customer arrives in the next minute span is

Solution

We use a Poisson process with a parameter $\lambda t, \lambda t=0.3 \times 10=3$ in items a) and b).
a)

$$
P(2 \text { customers in } 10 \text { minute span })=\frac{e^{-0.3 \cdot 10}(0.3 \cdot 10)^{2}}{2!}=0.224
$$

b)

$$
\begin{aligned}
& P(2 \text { or more in } 10 \text { minute span })=1-P(0)-P(1) \\
& \qquad=1-\frac{e^{-0.3 \cdot 10}(0.3 \cdot 10)^{0}}{0!}-\frac{e^{-0.3 \cdot 10}(0.3 \cdot 10)^{1}}{1!}=0.8 .
\end{aligned}
$$

c)
P (one customer in 5 minute and one customer in the next minute)

$$
=\frac{e^{-0.3 \cdot 5}(0.3 \cdot 5)^{1}}{1!} \cdot \frac{e^{-0.3 \cdot 1}(0.3 \cdot 1)^{1}}{1!}=0.074
$$

