Answer on Question \#44762 - Math - Trigonometry

Model equation for tide: $h=2 \cos (\pi / 6 t-2 \pi / 3)+4$
Given the above, a large boat needs at least 4 meters of water to secure it at the end of the pier. Determine what span of time after noon, including both a starting and ending time, the boat can first safely be secured, justifying your answer.

So far, I have gotten this, but I'm stuck!

$$
\begin{aligned}
& 4=2 \cos (\pi / 6 t-2 \pi / 3)+4 \\
& 0=2 \cos (\pi / 6 t-2 \pi / 3) \\
& 0=\cos (\pi / 6 t-2 \pi / 3) \\
& 0=\cos (\pi / 6 t) \cos (2 \pi / 3)+\sin (\pi / 6 t) \sin (2 \pi / 3)
\end{aligned}
$$

Answer.

A large boat needs at least 4 meters of water, so h must be not less than 4.
So our first goal is to solve $2 \cos \left(\frac{\pi}{6} t-\frac{2 \pi}{3}\right)+4=4$ or
$\cos \left(\frac{\pi}{6} t-\frac{2 \pi}{3}\right)=0$ for 't'
$\frac{\pi}{6} t-\frac{2 \pi}{3}=\frac{\pi}{2}+k \pi, k$ is integer;
$\frac{\pi}{6} t=\frac{3 \pi}{6}+\frac{4 \pi}{6}+k \pi ; \quad \frac{\pi}{6} t=\frac{7 \pi}{6}+k \pi ; \quad t=7+6 k, k$ is integer.
We should get the solutions $t=1, t=7, t=13, t=19$ etc. (i.e. add 6 hours to each solution to get another one).

Since we only care about hours after noon, this means that $t \geq 12$.
So at $t=13$ (1 pm), the height is 4 meters. As time goes on, the water rises. When it reaches $t=19$ (7 pm), the water comes back to 4 meters, which then starts to dip below that mark. So the water is at least 4 meters high from the hours of 1 pm to 7 pm .

The water will eventually come back up, but it will reach the 4 meter mark at 1 am the next day.

