Answer on Question \#44747 - Math - Analytic Geometry

the angle between vector p and vector q is cos inverse ($-3 b / 2 a$), if $|p|=\mid$ vector a $+2 b$ vector \mid. find vector q. if $|p|=|q|$

Solution:

$\alpha=\arccos \left(-\frac{3 b}{2 a}\right)-$ angle between two vectors;
$|\vec{p}|=|\vec{a}+2 \vec{b}|$
$|\overrightarrow{\mathrm{p}}|=|\overrightarrow{\mathrm{q}}|$

$$
\begin{gather*}
|\overrightarrow{\mathrm{p}}|^{2}=|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}|^{2} \tag{2}\\
|\overrightarrow{\mathrm{p}}|^{2}=\mathrm{a}^{2}+4 \overrightarrow{\mathrm{a}}+4 \mathrm{~b}^{2}
\end{gather*}
$$

The scalar product of two vectors:

$$
\begin{gathered}
\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}| \cdot|\overrightarrow{\mathrm{q}}| \cdot \cos \alpha \\
\begin{array}{l}
(1) \mathrm{and}(2) \operatorname{in}(3): \\
\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}| \cdot|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}| \cdot\left(-\frac{3 \mathrm{~b}}{2 \mathrm{a}}\right) \\
\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}})^{2} \cdot\left(-\frac{3 \mathrm{~b}}{2 \mathrm{a}}\right) \\
\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=\left(\mathrm{a}^{2}+4 \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}}+4 \mathrm{~b}^{2}\right)\left(-\frac{3 \mathrm{~b}}{2 \mathrm{a}}\right)
\end{array}
\end{gathered}
$$

We can't find vector \vec{q} using only vectors \vec{a} and \vec{b}, we need more information about vector $\overrightarrow{\mathrm{p}}$ to find vector $\overrightarrow{\mathrm{q}}$.

